ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - S. N. Quinn 2013
We report the discovery of the first hot Jupiter in the Hyades open cluster. HD 285507b orbits a V=10.47 K4.5V dwarf ($M_* = 0.734 M_odot$; $R_* = 0.656 R_odot$) in a slightly eccentric ($e = 0.086^{+0.018}_{-0.019}$) orbit with a period of $6.0881^{ +0.0019}_{-0.0018}$ days. The induced stellar radial velocity corresponds to a minimum companion mass of $M_{rm p} sin{i} = 0.917 pm 0.033 M_{rm Jup}$. Line bisector spans and stellar activity measures show no correlation with orbital phase, and the radial velocity amplitude is independent of wavelength, supporting the conclusion that the variations are caused by a planetary companion. Follow-up photometry indicates with high confidence that the planet does not transit. HD 285507b joins a small but growing list of planets in open clusters, and its existence lends support to a planet formation scenario in which a high stellar space density does not inhibit giant planet formation and migration. We calculate the circularization timescale for HD 285507b to be larger than the age of the Hyades, which may indicate that this planets non-zero eccentricity is the result of migration via interactions with a third body. We also demonstrate a significant difference between the eccentricity distributions of hot Jupiters that have had time to tidally circularize and those that have not, which we interpret as evidence against Type II migration in the final stages of hot Jupiter formation. Finally, the dependence of the circularization timescale on the planetary tidal quality factor, $Q_{rm p}$, allows us to constrain the average value for hot Jupiters to be $log{Q_{rm p}} = 6.14^{+0.41}_{-0.25}$.
81 - S. N. Quinn 2012
We present the discovery of two giant planets orbiting stars in Praesepe (also known as the Beehive Cluster). These are the first known hot Jupiters in an open cluster and the only planets known to orbit Sun-like, main-sequence stars in a cluster. Th e planets are detected from Doppler shifted radial velocities; line bisector spans and activity indices show no correlation with orbital phase, confirming the variations are caused by planetary companions. Pr0201b orbits a V=10.52 late F dwarf with a period of 4.4264 +/- 0.0070 days and has a minimum mass of 0.540 +/- 0.039 Mjup, and Pr0211b orbits a V=12.06 late G dwarf with a period of 2.1451 +/- 0.0012 days and has a minimum mass of 1.844 +/- 0.064 Mjup. The detection of 2 planets among 53 single members surveyed establishes a lower limit on the hot Jupiter frequency of 3.8 (+5.0)(-2.4) % in this metal-rich open cluster. Given the precisely known age of the cluster, this discovery also demonstrates that, in at least 2 cases, giant planet migration occurred within 600 Myr after formation. As we endeavor to learn more about the frequency and formation history of planets, environments with well-determined properties -- such as open clusters like Praesepe -- may provide essential clues to this end.
116 - J. H. Steffen 2011
We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASAs Kepler spa cecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary ($0.424 pm 0.017 text{M}_odot$) and the orbital parameters of the binary about the central star.
117 - S. N. Quinn 2010
We report the discovery of HAT-P-25b, a transiting extrasolar planet orbiting the V = 13.19 G5 dwarf star GSC 1788-01237, with a period P = 3.652836 +/- 0.000019 days, transit epoch Tc = 2455176.85173 +/- 0.00047 (BJD), and transit duration 0.1174 +/ - 0.0017 days. The host star has mass of 1.01 +/- 0.03 M(Sun), radius of 0.96 +(0.05)-(0.04) R(Sun), effective temperature 5500 +/- 80 K, and metallicity [Fe/H] = +0.31 +/- 0.08. The planetary companion has a mass of 0.567 +/- 0.022 M(Jup), and radius of 1.190 +(0.081)-(0.056) R(Jup) yielding a mean density of 0.42 +/- 0.07 g cm-3. Comparing these observations with recent theoretical models, we find that HAT-P-25b is consistent with a hydrogen-helium dominated gas giant planet with negligible core mass and age 3.2 +/- 2.3 Gyr. The properties of HAT-P-25b support several previously observed correlations for planets in the mass range 0.4 < M < 0.7 M(Jup), including those of core mass vs. metallicity, planet radius vs. equilibrium temperature, and orbital period vs. planet mass. We also note that HAT-P-25b orbits the faintest star found by HATNet to have a transiting planet to date, and is one of only a very few number of planets discovered from the ground orbiting a star fainter than V = 13.0.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا