ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel technique has been developed, which will open exciting new opportunities for studying the very neutron-rich nuclei involved in the r-process. As a proof-of-principle, the $gamma$-spectra from the $beta$-decay of $^{76}$Ga have been measured w ith the SuN detector at the National Superconducting Cyclotron Laboratory. The nuclear level density and $gamma$-ray strength function are extracted and used as input to Hauser-Feshbach calculations. The present technique is shown to strongly constrain the $^{75}$Ge($n,gamma$)$^{76}$Ge cross section and reaction rate.
Low-energy excited states in 71,73Ni populated via the {beta} decay of 71,73Co were investigated in an experiment performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). Detailed analysis led to the c onstruction of level schemes of 71,73Ni, which are interpreted using systematics and analyzed using shell model calculations. The 5/2- states attributed to the the f5/2 orbital and positive parity 5/2+ and 7/2+ states from the g9/2 orbital have been identified in both 71,73Ni. In 71Ni the location of a 1/2- {beta}-decaying isomer is proposed and limits are suggested as to the location of the isomer in 73Ni. The location of positive parity cluster states are also identified in 71,73Ni. Beta-delayed neutron branching ratios obtained from this data are given for both 71,73Co.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا