ترغب بنشر مسار تعليمي؟ اضغط هنا

141 - M. Ciafaloni , S. Munier 2010
We present a full study of the 3-body problem in gravity in flat (2+1)-dimensional space-time, and in the nonrelativistic limit of small velocities. We provide an explicit form of the ADM Hamiltonian in a regular coordinate system and we set up all t he ingredients for canonical quantization. We emphasize the role of a U(2) symmetry under which the Hamiltonian is invariant and which should generalize to a U(N-1) symmetry for N bodies. This symmetry seems to stem from a braid group structure in the operations of looping of particles around each other, and guarantees the single-valuedness of the Hamiltonian. Its role for the construction of single-valued energy eigenfunctions is also discussed.
In the framework of a toy model which possesses the main features of QCD in the high energy limit, we conduct a numerical study of scattering amplitudes constructed from parton splittings and projectile-target multiple interactions, in a way that uni tarizes the amplitudes without however explicit saturation in the wavefunction of the incoming states. This calculation is performed in two different ways. One of these formulations, the closest to field theory, involves the numerical resummation of a factorially divergent series, for which we develop appropriate numerical tools. We accurately compare the properties of the resulting amplitudes with what would be expected if saturation were explicitly included in the evolution of the states. We observe that the amplitudes have similar properties in a small but finite range of rapidity in the beginning of the evolution, as expected. Some of the features of reaction-diffusion processes are already present in that range, even when saturation is left out of the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا