ترغب بنشر مسار تعليمي؟ اضغط هنا

Blazars show rapid and violent variabilities, which timescale are often less than a day. We studied intraday variations by applying a shot analysis technique to Kepler monitoring of blazar W2R 1926+42 in Quarter 14. We obtained a mean profile calcula ted from 195 rapid variations. The mean profile shows three components; one is a sharp structure distributed within $pm$0.1 day of the peak, and two slow-varying components. This spiky-peak component reflects features of rapid variations directly. The profile of peak component shows an exponential rise and decay of which timescales are different, 0.0416 and 0.0588 day respectively. This component is too sharp to represent a standard function which is often used to express blazar variations. This asymmetric profile at the peak is difficult to be explained by a simple variation of the Doppler factor by changing a geometry of the emitting region. This result indicates that intraday variations arise from a production of high-energy accelerated particles in the jet.
69 - J. M. Miller 2014
Thanks to extensive observations with X-ray missions and facilities working in other wavelengths, as well as rapidly--advancing numerical simulations of accretion flows, our knowledge of astrophysical black holes has been remarkably enriched. Rapid p rogress has opened new areas of enquiry, including measurements of black hole spin, the properties and driving mechanisms of jets and disk winds, the impact of feedback into local environments, the origin of periodic and aperiodic X-ray variations, and the nature of super-Eddington accretion flows, among others. The goal of this White Paper is to illustrate how ASTRO-H can make dramatic progress in the study of astrophysical black holes, particularly the study of black hole X-ray binaries.
We present observations of a transient He-like Fe K alpha absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution fro m the start and the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for ~10 ks, and weakens thereafter. The overall change in equivalent width is a factor of ~3, peaking at an orbital phase of ~0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of ~10^(10-12) cm with a density of ~10^((-13)-(-11)) g cm^-3, which accretes onto and/or transits the line-of-sight to the black hole, causing an instant decrease in the observed degree of the ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.
37 - R. Kawabata , S. Mineshige , 2007
Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly considered as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of gravitational binding energy of accreting matter is depo sited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz & Socrates (2005) proposed that high energy neutrinos from hot corona above the accretion disk might enhance the efficiency of energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks; one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, H<<r. This is because the neutrino emission is very sensitive to the temperature of emitting region, and then the ratio Tc/Td cannot be so large.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا