ترغب بنشر مسار تعليمي؟ اضغط هنا

106 - D. Meyers , S. Middey , M. Kareev 2013
Ultrathin epitaxial films of EuNiO3 were grown on a series of substrates traversing highly compressive (- 2.4%) to highly tensile (2.5%) lattice mismatch. X-ray diffraction measurements showed the expected c-lattice parameter shift for compressive st rain, but no detectable shift for tensilely strained substrates, while reciprocal space mapping confirmed the tensile strained film maintained epitaxial coherence. Transport measurements showed a successively (from tensile to compressive) lower resistance and a complete suppression of the metalinsulator transition at highly compressive lattice mismatch. Corroborating these findings, X-ray absorption spectroscopy measurements revealed a strong multiplet splitting in the tensile samples that progressively weakens with increasing compressive strain that, combined with cluster calculations, showed enhanced covalence between Ni-d and O-p orbitals leads to the metallic state.
360 - S. Middey , D. Meyers , M. Kareev 2012
The epitaxial stabilization of a single layer or superlattice structures composed of complex oxide materials on polar (111) surfaces is severely burdened by reconstructions at the interface, that commonly arise to neutralize the polarity. We report o n the synthesis of high quality LaNiO$_3$/mLaAlO$_3$ pseudo cubic (111) superlattices on polar (111)-oriented LaAlO$_3$, the proposed complex oxide candidate for a topological insulating behavior. Comprehensive X-Ray diffraction measurements, RHEED, and element specific resonant X-ray absorption spectroscopy affirm their high structural and chemical quality. The study offers an opportunity to fabricate interesting interface and topology controlled (111) oriented superlattices based on ortho-nickelates.
The microscopic origin of the high Neel temperature (T_N) observed experimentally in SrTcO_3 has been examined using a combination of ab-initio electronic structure calculations and mean-field solutions of a multiband Hubbard model. The G-type antife rromagnetic state is found to be robust for a large region of parameter space, with large stabilization energies found, surprisingly, for small values of intraatomic exchange interaction strength as well as large bandwidths. The microscopic origin of this is traced to specific aspects associated with the d3 configuration at the transition-metal site. Considering values of interaction strengths appropriate for SrTcO3 and the corresponding 3d oxide SrMnO_3, we find a ratio of 4:1 for the TN as well as magnitudes consistent with experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا