ترغب بنشر مسار تعليمي؟ اضغط هنا

We report neutron scattering experiment results revealing the nature of the magnetic order occurring in the heavy fermion superconductor Ce0.95Nd0.05CoIn5, a case for which an antiferromagnetic state is stabilized at a temperature below the supercond ucting transition one. We evidence an incommensurate order and its propagation vector is found to be identical to that of the magnetic field induced antiferromagnetic order occurring in the stoichiometric superconductor CeCoIn5, the so-called Q-phase. The commonality between these two cases suggests that superconductivity is a requirement for the formation of this kind of magnetic order and the proposed mechanism is the enhancement of nesting condition by d-wave order parameter with nodes in the nesting area.
Thin films of silver containing 0.3 - 1.5 at % Fe have been prepared by vapor co-deposition. Depending on substrate temperature and iron concentration we could systematically follow the formation of nanometer size clusters of iron from initially dilu te iron monomers. samples were characterized via X-ray diffraction, resistivity and M{o}ssbauer spectroscopic measurements. The magnetic behavior derived from M{o}ssbauer data can be best described with an ensemble of ferromagnetic mono-domain particles. The magnetic freezing observed at low temperatures, is controlled via the inter-particle interactions mediated via conduction electron polarization, i.e. RKKY interaction. The interaction of the cluster magnetic moments with the conduction electron sea is best quantified by the electrical resistivity data. For all studied concentrations we find a non-monotonic variation with temperature which can be understood by competing shielding of the cluster moments by conduction electron spin scattering due to Kondo effect and the magnetic coupling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا