ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then sim ulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons/second, we demonstrate that even very large optical surveys can be now be simulated. We demonstrate that we are able to: 1) construct kilometer scale phase screens necessary for wide-field telescopes, 2) reproduce atmospheric point-spread-function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, 3) accurately reproduce the expected spot diagrams for complex aspheric optical designs, and 4) recover system effective area predicted from analytic photometry integrals. This new code, the photon simulator (PhoSim), is publicly available. We have implemented the Large Synoptic Survey Telescope (LSST) design, and it can be extended to other telescopes. We expect that because of the comprehensive physics implemented in PhoSim, it will be used by the community to plan future observations, interpret detailed existing observations, and quantify systematics related to various astronomical measurements. Future development and validation by comparisons with real data will continue to improve the fidelity and usability of the code.
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image $sim$ 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to $rsim27.5$, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, textit{additive} systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than $sim10$ in the single short exposures, which propagates into a spurious shear correlation function at the $10^{-4}$--$10^{-3}$ level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.
We present XMM-Newton Reflection Grating Spectrometer observations of pairs of X-ray emission line profiles from the O star Zeta Pup that originate from the same He-like ion. The two profiles in each pair have different shapes and cannot both be cons istently fit by models assuming the same wind parameters. We show that the differences in profile shape can be accounted for in a model including the effects of resonance scattering, which affects the resonance line in the pair but not the intercombination line. This implies that resonance scattering is also important in single resonance lines, where its effect is difficult to distinguish from a low effective continuum optical depth in the wind. Thus, resonance scattering may help reconcile X-ray line profile shapes with literature mass-loss rates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا