ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of an all-sky survey made with the Fine Guidance Sensor on Hubble Space Telescope to search for angularly resolved binary systems among the massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type st ars and Luminous Blue Variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to detection of companions with an angular separation between 0.01 and 1.0 and brighter than $triangle m = 5$. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of log P. We identify a number of systems of potential interest for long term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.
We present an examination of high resolution, ultraviolet spectroscopy from Hubble Space Telescope of the photospheric spectrum of the O-supergiant in the massive X-ray binary HD 226868 = Cyg X-1. We analyzed this and ground-based optical spectra to determine the effective temperature and gravity of the O9.7 Iab supergiant. Using non-local thermodynamic equilibrium (non-LTE), line blanketed, plane parallel models from the TLUSTY grid, we obtain T_eff = 28.0 +/- 2.5kK and log g > 3.00 +/- 0.25, both lower than in previous studies. The optical spectrum is best fit with models that have enriched He and N abundances. We fit the model spectral energy distribution for this temperature and gravity to the UV, optical, and IR fluxes to determine the angular size of and extinction towards the binary. The angular size then yields relations for the stellar radius and luminosity as a function of distance. By assuming that the supergiant rotates synchronously with the orbit, we can use the radius - distance relation to find mass estimates for both the supergiant and black hole as a function of the distance and the ratio of stellar to Roche radius. Fits of the orbital light curve yield an additional constraint that limits the solutions in the mass plane. Our results indicate masses of 23^{+8}_{-6} M_sun for the supergiant and 11^{+5}_{-3} M_sun for the black hole.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا