ترغب بنشر مسار تعليمي؟ اضغط هنا

76 - S. Koyama , M. Kino , A. Doi 2015
We investigate the position of the radio core in a blazar by multi-epoch astrometric observations at 43 GHz. Using the VLBI Exploration of Radio Astrometry (VERA), we have conducted four adjacent observations in February 2011 and another four in Octo ber 2011, and succeeded in measuring the position of the radio core in the TeV blazar Mrk 501 relative to a distant compact quasar NRAO 512. During our observations, we find that (1) there is no positional change within ~0.2 mas or ~2.0 pc de-projected with $pm1sigma$ error for the weighted-mean phase-referenced positions of Mrk 501 core relative to NRAO 512 over four adjacent days, and (2) there is an indication of position change for 3C 345 core relative to NRAO 512. By applying our results to the standard internal shock model for blazars, we constrain the bulk Lorenz factors of the ejecta.
We investigate the radio and gamma-ray variability of the flat spectrum radio quasar PKS 1510-089 in the time range between 2010 November and 2012 January. In this period the source showed an intense activity, with two major gamma-ray flares detected in 2011 July and October. During the latter episode both the gamma-ray and the radio flux density reached their historical peak. Multiwavelength analysis shows a rotation of about 380 deg of the optical polarization angle close in time with the rapid and strong gamma-ray flare in 2011 July. An enhancement of the optical emission and an increase of the fractional polarization both in the optical and in radio bands is observed about three weeks later, close in time with another gamma-ray outburst. On the other hand, after 2011 September a huge radio outburst has been detected, first in the millimeter regime followed with some time delay at centimeter down to decimeter wavelengths. This radio flare is characterized by a rising and a decaying stage, in agreement with the formation of a shock and its evolution, as a consequence of expansion and radiative cooling. If the gamma-ray flare observed in 2011 October is related to this radio outburst, then this strongly indicates that the region responsible for the gamma-ray variability is not within the broad line, but a few parsecs downstream along the jet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا