ترغب بنشر مسار تعليمي؟ اضغط هنا

We report our findings on a new quasi-periodic oscillation (QPO) and a long period from the ultraluminous X-ray source (ULX) X-2 in nearby galaxy NGC 4736 based on the Chandra and XMM-Newton archival data. To examine the timing properties, power dens ity spectra of the source have been obtained using Fast Fourier Transform. Also the spectral parameters of the source have been calculated by obtaining and fitting the energy spectra. Power density spectrum of this source reveals a QPO peak at $0.73_{-0.14}^{+0.16}$ mHz with an fractional rms variability of 16% using the Chandra data (in the year 2000-lower state of the source). The XMM-Newton data analysis indicates a peak at $0.53_{-0.35}^{+0.09}$ mHz with a fractional rms variation of 5% (in the year 2006-higher state of the source). These recovered QPOs overlap within errors and may be the same oscillation. In addition, we detect a long periodicity or a QPO in the Chandra data of about $(5.2pm2.0)times10^{-5}$ Hz ($sim$ 5.4 hrs) over 3 $sigma$ confidence level. If this is a QPO, it is the lowest QPO detected from a ULX. The mass of the compact object in ULX X-2 is estimated using the Eddington luminosity and a disk blackbody model in the range (10$-$80) M_{sun}.
78 - A. Akyuz , S. Kayaci , H. Avdan 2013
We present results from a study of the non-nuclear discrete sources in a sample of three nearby spiral galaxies (NGC 4395, NGC 4736, and NGC 4258) based on XMM-Newton archival data supplemented with Chandra data for spectral and timing analyses. A to tal of 75 X-ray sources has been detected within the D25 regions of the target galaxies. The large collecting area of XMM-Newton makes the statistics sufficient to obtain spectral fitting for 16 (about 20%) of these sources. Compiling the extensive archival exposures available, we were able to obtain the detailed spectral shapes of diverse classes of point sources. We have also studied temporal properties of these luminous sources. 11 of them are found to show short-term (less than 80 ks) variation while 8 of them show long-term variation within factors of ~ 2 to 5 during a time interval of ~ 2 to 12 years. Timing analysis provides strong evidence that most of these sources are accreting X-ray binary (XRB) systems. One source that has properties different than others was suspected to be a Supernova Remnant (SNR), and our follow-up optical observation confirmed it. Our results indicate that sources within the three nearby galaxies are showing a variety of source populations, including several Ultraluminous X-Ray Sources (ULXs), X-ray binaries (XRBs), transients together with a Super Soft Source (SSS) and a background Active Galactic Nucleus (AGN) candidate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا