ترغب بنشر مسار تعليمي؟ اضغط هنا

The quantum spin liquid (QSL) is an exotic phase of magnetic materials where the spins continue to fluctuate without any symmetry breaking down to zero temperature. Among the handful reports of QSL with spin $Sge$1, examples with magnetic ions on a t hree-dimensional magnetic lattice are extremely rare since both larger spin and higher dimension tend to suppress quantum fluctuations. In this work, we offer a new strategy to achieve 3-D QSL with high spin by utilizing two types of transition metal ions, both are magnetically active but located at crystallographically inequivalent positions. We design a 3-D magnetic system Ba$_3$NiIr$_2$O$_9$ consisting of interconnected corner shared NiO$_6$ octahedra and face shared Ir$_2$O$_9$ dimer, both having triangular arrangements in textit{a-b} plane. X-ray absorption spectroscopy measurements confirm the presence of Ni$^{2+}$ ($S$=1). Our detailed thermodynamic and magnetic measurements reveal that this compound is a realization of gapless QSL state down to at least 100 mK. Ab-initio calculations find a strong magnetic exchange between Ir and Ni sublattices and in-plane antiferromagnetic coupling between the dimers, resulting in dynamically fluctuating magnetic moments on both the Ir and Ni sublattice.
109 - S. Jana , S. K. Panda , D. Phuyal 2018
Tailoring transport properties of strongly correlated electron systems in a controlled fashion counts among the dreams of materials scientists. In copper oxides, varying the carrier concentration is a tool to obtain high-temperature superconducting p hases. In manganites, doping results in exotic physics such as insulator-metal transitions (IMT), colossal magnetoresistance (CMR), orbital- or charge-ordered (CO) or charge-disproportionate (CD) states. In most oxides, antiferromagnetic order and charge-disproportionation are asssociated with insulating behavior. Here we report the realization of a unique physical state that can be induced by Mo doping in LaFeO$_3$: the resulting metallic state is a site-selective Mott insulator where itinerant electrons evolving in low-energy Mo states coexist with localized carriers on the Fe sites. In addition, a local breathing-type lattice distortion induces charge disproportionation on the latter, without destroying the antiferromagnetic order. A state, combining antiferromangetism, metallicity and CD phenomena is rather rare in oxides and may be of utmost significance for future antiferromagnetic memory devices.
In this work, we report the pressure dependence of the effective Coulomb interaction parameters (Hubbard U) in paramagnetic NiO within the constrained random phase approximation (cRPA). We consider five different low energy models starting from the m ost expensive one that treats both Ni-d and O-p states as correlated orbitals (dp-dp model) to the smallest possible two-orbital model comprising the eg states only (eg-eg model). We find that in all the considered models, the bare interactions are not very sensitive to the compression. However the partially screened interaction parameters show an almost linear increment as a function of compression, resulting from the substantial weakening of screening effects upon compression. This counterintuitive trend is explained from the specific characteristic changes of the basic electronic structure of this system. We further calculate the nearest neighbor inter-site d-d interaction terms which also show substantial enhancement due to compression. Our results for both the experimental and highly compressed structures reveal that the frequency dependence of the partially screened interactions can not be ignored in a realistic modeling of NiO. We also find that the computed interaction parameters for the antiferromagnetic NiO are almost identical to their paramagnetic counter parts.
We have revisited the valence band electronic structure of NiO by means of hard x-ray photoemission spectroscopy (HAXPES) together with theoretical calculations using both the GW method and the local density approximation + dynamical mean-field theor y (LDA+DMFT) approaches. The effective impurity problem in DMFT is solved through the exact diagonalization (ED) method. We show that the LDA+DMFT method alone cannot explain all the observed structures in the HAXPES spectra. GW corrections are required for the O bands and Ni-s and p derived states to properly position their binding energies. Our results establish that a combination of the GW and DMFT methods is necessary for correctly describing the electronic structure of NiO in a proper ab-initio framework. We also demonstrate that the inclusion of photoionization cross section is crucial to interpret the HAXPES spectra of NiO.We argue that our conclusions are general and that the here suggested approach is appropriate for any complex transition metal oxide.
The electronic structure and magnetic properties of a single Fe adatom on a CuN surface have been studied using density functional theory in the local spin density approximation (LSDA), the LSDA+U approach and the local density approximation plus dyn amical mean-field theory (LDA+DMFT). The impurity problem in LDA+DMFT is solved through exact diagonalization and in the Hubbard-I approximation. The comparison of the one-particle spectral functions obtained from LSDA, LSDA+U and LDA+DMFT show the importance of dynamical correlations for the electronic structure of this system. Most importantly, we focused on the magnetic anisotropy and found that neither LSDA, nor LSDA+U can explain the measured, high values of the axial and transverse anisotropy parameters. Instead, the spin excitation energies obtained from our LDA+DMFT approach with exact diagonalization agree significantly better with experimental data. This affirms the importance of treating fluctuating magnetic moments through a realistic many-body treatment when describing this class of nano-magnetic systems. Moreover, it facilitates insight to the role of the hybridization with surrounding orbitals.
We investigate magnetic, thermal, and dielectric properties of SrCuTe2O6, which is isostructural to PbCuTe2O6, a recently found, Cu-based 3D frustrated magnet with a corner sharing triangular spin network having dominant first and second nearest neig hbor (nn) couplings [B. Koteswararao, et al. Phys. Rev. B 90, 035141 (2014)]. Although SrCuTe2O6 has a structurally similar spin network, but the magnetic data exhibit the characteristic features of a typical quasi -one-dimensional magnet, which mainly resulted from the magnetically dominant third nn coupling, uniform chains. The magnetic properties of this system are studied via magnetization (M), heat capacity (Cp), dielectric constant, measurements along with ab-initio band structure calculations. Magnetic susceptibility chi(T) data show a broad maximum at 32 K and the system orders at low temperatures TN1=5.5 K and TN2=4.5 K, respectively. The analysis of chi(T) data gives an intra-chain coupling, J3/kB, to be about - 42 K with non-negligible frustrated inter-chain couplings (J1/kB and J2/kB). The hopping parameters obtained from LDA band structure calculations also suggest the presence of coupled uniform chains. The observation of simultaneous anomalies in dielectric constant at TN1 and TN2 suggests the presence of magneto-dielectric effect in SrCuTe2O6. A magnetic phase diagram is also built based on M, C p, and dielectric constant results.
NiS, exhibiting a text-book example of a first-order transition with many unusual properties at low temperatures, has been variously described in terms of conflicting descriptions of its ground state during the past several decades. We calculate thes e physical properties within first-principle approaches based on the density functional theory and conclusively establish that all experimental data can be understood in terms of a rather unusual ground state of NiS that is best described as a self-doped, nearly compensated, antiferromagnetic metal, resolving the age-old controversy. We trace the origin of this novel ground state to the specific details of the crystal structure, band dispersions and a sizable Coulomb interaction strength that is still sub-critical to drive the system in to an insulating state. We also show how the specific antiferromagnetic structure is a consequence of the less-discussed 90 degree and less than 90 degree superexchange interactions built in to such crystal structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا