ترغب بنشر مسار تعليمي؟ اضغط هنا

In an extension of the Standard Model with a scalar color octet, the possibility of the strongly first-order electroweak phase transition is studied, by examining the finite-temperature effective Higgs potential at the one-loop level. It is found tha t there are wide regions in the parameter space that allow the strongly first-order electroweak phase transition, where the Higgs boson mass is larger than the experimental lower bound of 115 GeV, and the masses of the scalar color octet is around 200 GeV. The parameter regions may be explored at the LHC with respect to the electroweak phase transition.
In the minimal supersymmetric standard model (MSSM), a strongly first-order electroweak phase transition (EWPT) is only possible in a confined parameter region where one of the scalar top quarks is lighter than the top quark and the other one is as h eavy as the SUSY breaking scale. If the MSSM is enlarged to accommodate vector-like quarks and their superpartners, we find that the strongly first-order EWPT is possible without requiring light scalar top quark at the one-loop level, in the limit where the lightest scalar Higgs boson of the MSSM behaves like the Higgs boson of the standard model and the other Higgs bosons are all as heavy as the SUSY breaking scale. The strength of the first-order EWPT is found to be dependent on the mass of the lightest neutral Higgs boson and the mixing effects of the vector-like scalar quarks.
143 - S. W. Ham , S. K. OH 2009
The Higgs sector of the U(1)-extended supersymmetric model is studied with great detail. We calculate the masses of the Higgs bosons at the one-loop level. We also calculate at the one-loop level the gluon-involving processes for the productions and decays of the scalar Higgs bosons of the model at the energy of the CERN Large Hadron Collider (LHC), where the radiative corrections due to the loops of top, bottom, and exotic quarks and their scalar partners are taken into account. We find that the exotic quark and exotic scalar quarks in the model may manifest themselves at the LHC, since the production of the heaviest scalar Higgs boson via gluon fusion processes is mediated virtually by the loops of exotic quark and exotic scalar quarks, for a reasonable parameter set of the model.
202 - S. W. Ham 2008
We find that, at the one-loop level, the spontaneous CP violation is possible in a supersymmetric standard model that has an extra chiral Higgs triplet with hypercharge Y=0. At the tree level, this triplet-extended supersymmetric standard model (TESS M) cannot have any reasonable parameter spaces for the spontaneous CP violation, because the experimental constraints on the coupling coefficient of the neutral Higgs boson to a pair of $Z$ bosons exclude them. By contrast, at the one-loop level, we find that there are experimentally allowed parameter regions, where the spontaneous CP violation may take place. The mass of the lightest neutral Higgs boson in the TESSM in this case may be as large as about 100 GeV, by considering the one-loop contribution due to the top quark and squark loops.
102 - S. W. Ham , J. O. Im , S. K. OH 2008
Within the framework of the minimal non-minimal supersymmetric standard model (MNMSSM) with tadpole terms, CP violation effects in the Higgs sector are investigated at the one-loop level, where the radiative corrections from the loops of the quark an d squarks of the third generation are taken into account. Assuming that the squark masses are not degenerate, the radiative corrections due to the stop and sbottom quarks give rise to CP phases, which trigger the CP violation explicitly in the Higgs sector of the MNMSSM. The masses, the branching ratios for dominant decay channels, and the total decay widths of the five neutral Higgs bosons in the MNMSSM are calculated in the presence of the explicit CP violation. The dependence of these quantities on the CP phases is quite recognizable, for given parameter values.
154 - S. W. Ham , E. J. Yoo , S. K. OH 2008
We study the scalar Higgs sector of the next-to-minimal supersymmetric standard model with an extra U(1), which has two Higgs doublets and a Higgs singlet, in the light leptophobic $Z$ scenario where the extra neutral gauge boson $Z$ does not couple to charged leptons. In this model, we find that the sum of the squared coupling coefficients of the three neutral scalar Higgs bosons to $ZZ$, normalized by the corresponding SM coupling coefficient is noticeably smaller than unity, due to the effect of the extra U(1), for a reasonable parameter space of the model, whereas it is unity in the next-to-minimal supersymmetric standard model. Thus, these two models may be distinguished if the coupling coefficients of neutral scalar Higgs bosons to $ZZ$ are measured at the future International Linear Collider by producing them via the Higgs-strahlung, $ZZ$ fusion, and $WW$ fusion processes.
73 - S. W. Ham , S. K. OH 2007
The possibility of a strongly first-order electroweak phase transition is established in the minimal supersymmetric standard model with an extra $U(1)$, where a nontrivial CP violating phase is introduced in its Higgs sector. We find that there is a wide region in the parameter space of the model that allows the strongly first-order electroweak phase transition. The mass of stop quark need not be smaller than the top quark mass to ensure the first-order electroweak phase transition be strong. The effect of the CP violating phase upon the strength of the phase transition is discovered. The strength of the phase transition is reduced when the size of the CP violation is increased. For a given CP violating phase, we find that the model has a larger mass for the lightest Higgs boson when it has a stronger phase transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا