ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - S. Vig , S. K. Ghosh (2 2014
The southern Galactic high mass star-forming region, G351.6-1.3, is a HII region-molecular cloud complex with a luminosity of 2.0 x 10^5 L_sun, located at a distance of 2.4 kpc. In this paper, we focus on the investigation of the associated HII regio n, embedded cluster and the interstellar medium in the vicinity of G351.6-1.3. We address the identification of exciting source(s) as well as the census of stellar populations. The ionised gas distribution has been mapped using the Giant Metrewave Radio Telescope (GMRT), India at three continuum frequencies: 1280, 610 and 325 MHz. The HII region shows an elongated morphology and the 1280 MHz map comprises six resolved high density regions encompassed by diffuse emission spanning 1.4 pc x 1.0 pc. The zero age main-sequence (ZAMS) spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS instrument on the 1.4 m Infrared Survey Facility (IRSF) telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be 0.27 +- 0.03 and the fraction of the near-infrared excess stars is estimated to be 43%. These indicate that the age of the cluster is consistent with 1 Myr. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.
We investigate the large-scale structure of the interstellar medium (ISM) around the massive star cluster RCW38 in the [CII] 158 um line and polycyclic aromatic hydrocarbon (PAH) emission. We carried out [CII] line mapping of an area of ~30x15 for RC W~38 by a Fabry-Perot spectrometer on a 100 cm balloon-borne telescope with an angular resolution of ~1.5. We compared the [CII] intensity map with the PAH and dust emission maps obtained by the AKARI satellite. The [CII] emission shows a highly nonuniform distribution around the cluster, exhibiting the structure widely extended to the north and the east from the center. The [CII] intensity rapidly drops toward the southwest direction, where a CO cloud appears to dominate. We decompose the 3-160 um spectral energy distributions of the surrounding ISM structure into PAH as well as warm and cool dust components with the help of 2.5-5 um spectra. We find that the [CII] emission spatially corresponds to the PAH emission better than to the dust emission, confirming the relative importance of PAHs for photo-electric heating of gas in photo-dissociation regions. A naive interpretation based on our observational results indicates that molecular clouds associated with RCW38 are located both on the side of and behind the cluster.
93 - Amit Kumar 2012
Ultra Violet Imaging Telescope on ASTROSAT Satellite mission is a suite of Far Ultra Violet (FUV 130 to 180 nm), Near Ultra Violet (NUV 200 to 300 nm) and Visible band (VIS 320 to 550nm) imagers. ASTROSAT is the first multi wavelength mission of INDI A. UVIT will image the selected regions of the sky simultaneously in three channels and observe young stars, galaxies, bright UV Sources. FOV in each of the 3 channels is about 28 arc-minute. Targeted angular resolution in the resulting UV images is better than 1.8 arc-second (better than 2.0 arc-second for the visible channel). Two identical co-aligned telescopes (T1, T2) of Ritchey-Chretien configuration (Primary mirror of 375 mm diameter) collect celestial radiation and feed to the detector system via a selectable filter on a filter wheel mechanism; gratings are available in filter wheels of FUV and NUV channels for slit-less low resolution spectroscopy. The detector system for each of the 3 channels is generically identical. One of the telescopes images in the FUV channel, while the other images in NUV and VIS channels. Images from VIS channel are also used for measuring drift for reconstruction of images on ground through shift and add algorithm, and to reconstruct absolute aspect of the images. Adequate baffling has been provided for reducing scattered background from the Sun, earth albedo and other bright objects. One time open-able mechanical cover on each telescope also works as a Sun-shield after deployment. We are presenting here the overall (mechanical, optical and electrical) design of the payload.
112 - S. Vig 2008
The physical conditions of the interstellar medium and stellar components in the regions of the southern Galactic star forming complexes associated with IRAS 10049-5657 and IRAS 10031-5632 have been investigated. These regions have been mapped simult aneously in two far infrared bands lambda_eff ~ 150 & 210 micron, with ~ 1 angular resolution using the TIFR 1-m balloon borne telescope. Spatial distribution of the temperature of cool dust and optical depth at 200 micron have been obtained. Using the 2MASS sources, the stellar populations of the embedded young clusters have been studied. A rich cluster of OB stars in the IRAS 10049-5657 region has been found with a cluster radius ~ 2 pc. The source in the cluster closest to the IRAS peak, lies above the ZAMS curve of spectral type O5 in the colour-magnitude diagram. Unlike IRAS 10049-5657, a small cluster comprising of a few deeply embedded sources is seen at the location of IRAS 10031-5632. Self consistent radiative transfer modelling aimed at extracting important physical and geometrical details of the two IRAS sources show that the best fit models are in good agreement with the observed spectral energy distributions. The geometric details of the associated cloud and optical depths (at 100 micron) have been estimated. A uniform density distribution of dust and gas is implied for both the sources. In addition, the infrared ionic fine-structure line emission from gas has been modelled for both these regions and compared with data from IRAS-Low Resolution Spectrometer. For IRAS 10049-5657, the observed and modelled luminosities for most lines agree to within a factor of four while for IRAS 10031-5632, we find a discrepancy of a factor of 100.
We present a detailed study of the interface morphology of an electro-deposited (ED) Ni/Cu bilayer film by using off-specular (diffuse) neutron reflectivity technique and Atomic Force Microscopy (AFM). The Ni/Cu bilayer has been electro-deposited on seed layers of Ti/Cu. These two seed layers were deposited by magnetron sputtering. The depth profile of density in the sample has been obtained from specular neutron reflectivity data. AFM image of the air-film interface shows that the surface is covered by globular islands of different sizes. The AFM height distribution of the surface clearly shows two peaks [Fig. 3] and the relief structure (islands) on the surface in the film can be treated as a quasi-two-level random rough surface structure. We have demonstrated that the detailed morphology of air-film interfaces, the quasi-two level surface structure as well as morphology of the buried interfaces can be obtained from off-specular neutron reflectivity data. We have shown from AFM and off-specular neutron reflectivity data that the morphologies of electro-deposited surface is distinctly different from that of sputter-deposited interface in this sample. To the best of our knowledge this is the first attempt to microscopically quantify the differences in morphologies of metallic interfaces deposited by two different techniques viz. electro-deposition and sputtering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا