ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey of the Milky Way disk and the Magellanic System at the wavelengths of the 21-cm atomic hydrogen (HI) line and three 18-cm lines of the OH molecule will be carried out with the Australian Square Kilometre Array Pathfinder telescope. The surve y will study the distribution of HI emission and absorption with unprecedented angular and velocity resolution, as well as molecular line thermal emission, absorption, and maser lines. The area to be covered includes the Galactic plane (|b|< 10deg) at all declinations south of delta = +40deg, spanning longitudes 167deg through 360deg to 79deg at b=0deg, plus the entire area of the Magellanic Stream and Clouds, a total of 13,020 square degrees. The brightness temperature sensitivity will be very good, typically sigma_T ~ 1 K at resolution 30arcsec and 1 km/s. The survey has a wide spectrum of scientific goals, from studies of galaxy evolution to star formation, with particular contributions to understanding stellar wind kinematics, the thermal phases of the interstellar medium, the interaction between gas in the disk and halo, and the dynamical and thermal states of gas at various positions along the Magellanic Stream.
One of the Survey Science Projects that the Australian Square Kilometre Array Pathfinder (ASKAP) telescope will do in its first few years of operation is a study of the 21-cm line of HI and the 18-cm lines of OH in the Galactic Plane and the Magellan ic Clouds and Stream. The wide-field ASKAP can survey a large area with very high sensitivity much faster than a conventional telescope because of its focal plane array of receiver elements. The brightness sensitivity for the widespread spectral line emission of the interstellar medium depends on the beam size and the survey speed. In the GASKAP survey, maps with different resolutions will be synthesized simultaneously; these will be matched to different scientific applications such as diffuse HI and OH emission, OH masers, and HI absorption toward background continuum sources. A great many scientific questions will be answered by the GASKAP survey results; a central topic is the exchange of matter and energy between the Milky Way disk and halo. The survey will show how neutral gas at high altitude (z) above the disk, like the Magellanic Stream, makes its way down through the halo, what changes it experiences along the way, and how much is left behind.
Radio observations of gas in the Milky Way and Local Group are vital for understanding how galaxies function as systems. The unique sensitivity of Arecibos 305m dish, coupled with the 7-beam Arecibo L-Band Feed Array (ALFA), provides an unparalleled tool for investigating the full range of interstellar phenomena traced by the HI 21cm line. The GALFA (Galactic ALFA) HI Survey is mapping the entire Arecibo sky over a velocity range of -700 to +700 km/s with 0.2 km/s velocity channels and an angular resolution of 3.4 arcminutes. We present highlights from the TOGS (Turn on GALFA Survey) portion of GALFA-HI, which is covering thousands of square degrees in commensal drift scan observations with the ALFALFA and AGES extragalactic ALFA surveys. This work is supported in part by the National Astronomy and Ionosphere Center, operated by Cornell University under cooperative agreement with the National Science Foundation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا