ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate pump-induced exciton inversion in a quantum-dot cavity system with continuous wave drive. Using a polaron-based master equation, we demonstrate excited-state populations above 0.9 for an InAs dot at a phonon bath temperature of 4K. In an exciton-driven system, the dominant mechanism is incoherent excitation from the phonon bath. For cavity driving, the mechanism is phonon-mediated switching between ground- and excited-state branches of the ladder of photon states, as quantum trajectory simulations clearly show. The exciton inversion as a function of detuning is found to be qualitatively different for exciton and cavity driving, primarily due to cavity filtering. The master equation approach allows us to include important radiative and non-radiative decay processes on the zero phonon line, provides a clear underlying dynamic in terms of photon and phonon scattering, and admits simple analytical approximations that help to explain the physics.
90 - S. Hughes , C. Roy 2011
We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of photon propagation and anharmonic cavity-QED for various dot-cavity interaction strengths, including weakly-coupled, intermediately-coupled, and strongly-coupled regimes. We demonstrate that for mean photon numbers much less than 0.1, the commonly adopted weak excitation (single quantum) approximation breaks down, even in the weak coupling regime. As a measure of the anharmonic multiphoton-correlations, we compute the Fano factor and the correlation error associated with making a semiclassical approximation. We also explore the role of electron--acoustic-phonon scattering and find that phonon-mediated scattering plays a qualitatively important role on the light propagation characteristics. As an application of the theory, we simulate a conditional phase gate at a phonon bath temperature of $20 $K in the strong coupling regime.
We present an off-resonant excitation scheme that realizes pronounced stationary inversion in a two level system. The created inversion exploits a cavity-assisted two photon resonance to enhance the multi-photon regime of nonlinear cavity QED and sur vives even in a semiconductor environment, where the cavity decay rate is comparable to the cavity-dot coupling rate. Exciton populations of greater than 0.75 are obtained in the presence of realistic decay and pure dephasing. Quantum trajectory simulations and quantum master equation calculations help elucidate the underlying physics and delineate the limitations of a simplified rate equation model. Experimental signatures of inversion and multi-photon cavity QED are predicted in the fluorescence intensity and second-order correlation function measured as a function of drive power.
177 - S. Hughes , P. Yao , F. Milde 2011
We present a medium-dependent quantum optics approach to describe the influence of electron-acoustic phonon coupling on the emission spectra of a strongly coupled quantum-dot cavity system. Using a canonical Hamiltonian for light quantization and a p hoton Green function formalism, phonons are included to all orders through the dot polarizability function obtained within the independent Boson model. We derive simple user-friendly analytical expressions for the linear quantum light spectrum, including the influence from both exciton and cavity-emission decay channels. In the regime of semiconductor cavity-QED, we study cavity emission for various exciton-cavity detunings and demonstrate rich spectral asymmetries as well as cavity-mode suppression and enhancement effects. Our technique is nonperturbative, and non-Markovian, and can be applied to study photon emission from a wide range of semiconductor quantum dot structures, including waveguides and coupled cavity arrays. We compare our theory directly to recent and apparently puzzling experimental data for a single site-controlled quantum dot in a photonic crystal cavity and show good agreement as a function of cavity-dot detuning and as a function of temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا