ترغب بنشر مسار تعليمي؟ اضغط هنا

The local coordination numbers of As$_2$Se$_3$ glass were determined by a combination of anomalous x-ray scattering experiments, reverse Monte Carlo calculations, and {it ab initio} molecular dynamics simulations. The well-known `8-$N$ bonding rule p roposed by Mott breaks down around the As atoms, exceeding the rule by 7--26%. An experimental prediction based on mean-field theory agrees with the present experimental and theoretical results. The fourfold coordinated As atoms likely form As-As wrong bond chains rather than ethan-like configurations, which is identified as the origin for the breakdown of the `8-$N$ bonding rule.
Owing to their large relatively thermal conductivity, peculiar, non-hydrodynamic features are expected to characterize the acoustic-like excitations observed in liquid metals. We report here an experimental study of collective modes in molten nickel, a case of exceptional geophysical interest for its relevance in Earth interior science. Our result shed light on previously reported contrasting evidences: in the explored energy-momentum region no deviation from the generalized hydrodynamic picture describing non conductive fluids are observed. Implications for high frequency transport properties in metallic fluids are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا