ترغب بنشر مسار تعليمي؟ اضغط هنا

37 - S. Hocuk , S. Cazaux 2014
During the evolution of diffuse clouds to molecular clouds, gas-phase molecules freeze out on surfaces of small dust particles to form ices. On dust surfaces, water is the main constituent of the icy mantle in which a complex chemistry is taking plac e. We aim to study the formation pathways and the composition of the ices throughout the evolution of diffuse clouds. For this purpose, we use time-dependent rate equations to calculate the molecular abundances in both gas phase and on solid surfaces (onto dust grains). We fully consider the gas-dust interplay by including the details of freeze-out, chemical and thermal desorption, as well as the most important photo-processes on grain surfaces. The difference in binding energies of chemical species on bare and icy surfaces is also incorporated into our equations. Using the numerical code FLASH, we perform a hydrodynamical simulation of a gravitationally bound diffuse cloud and follow its contraction. We find that while the dust grains are still bare, water formation is enhanced by grain surface chemistry which is subsequently released into the gas phase, enriching the molecular medium. The CO molecules, on the other hand, tend to freeze out gradually on bare grains. This causes CO to be well mixed and strongly present within the first ice layer. Once one monolayer of water ice has formed, the binding energy of the grain surface changes significantly and an immediate and strong depletion of gas-phase water and CO molecules occur. While hydrogenation converts solid CO into formaldehyde (H$_2$CO) and methanol (CH$_3$OH), water ice becomes the main constituent of the icy grains. Inside molecular clumps formaldehyde is more abundant than water and methanol in the gas phase owing its presence in part to chemical desorption.
84 - S. Hocuk , S. Cazaux , 2013
Atoms and molecules, and in particular CO, are important coolants during the evolution of interstellar star-forming gas clouds. The presence of dust grains, which allow many chemical reactions to occur on their surfaces, strongly impacts the chemical composition of a cloud. At low temperatures, dust grains can lock-up species from the gas phase which freeze out and form ices. In this sense, dust can deplete important coolants. Our aim is to understand the effects of freeze-out on the thermal balance and the evolution of a gravitationally bound molecular cloud. For this purpose, we perform 3D hydrodynamical simulations with the adaptive mesh code FLASH. We simulate a gravitationally unstable cloud under two different conditions, with and without grain surface chemistry. We let the cloud evolve until one free-fall time is reached and track the thermal evolution and the abundances of species during this time. We see that at a number density of 10$^4$ cm$^{-3}$ most of the CO molecules are frozen on dust grains in the run with grain surface chemistry, thereby depriving the most important coolant. As a consequence, we find that the temperature of the gas rises up to $sim$25 K. The temperature drops once again due to gas-grain collisional cooling when the density reaches a few$times$10$^4$ cm$^{-3}$. We conclude that grain surface chemistry not only affects the chemical abundances in the gas phase, but also leaves a distinct imprint in the thermal evolution that impacts the fragmentation of a star-forming cloud. As a final step, we present the equation of state of a collapsing molecular cloud that has grain surface chemistry included.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا