ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-trivial interplay between quantum coherence and dissipative environment-driven dynamics is becoming increasingly recognised as key for efficient energy transport in photosynthetic pigment-protein complexes, and converting these biologically-ins pired insights into a set of design principles that can be implemented in artificial light-harvesting systems has become an active research field. Here we identify a specific design principle - the phonon antenna - that demonstrates how inter-pigment coherence is able to modify and optimize the way that excitations spectrally sample their local environmental fluctuations. We place this principle into a broader context and furthermore we provide evidence that the Fenna-Matthews-Olson complex of green sulphur bacteria has an excitonic structure that is close to such an optimal operating point, and suggest that this general design principle might well be exploited in other biomolecular systems.
The sub-ohmic spin-boson model is known to possess a novel quantum phase transition at zero temperature between a localised and delocalised phase. We present here an analytical theory based on a variational ansatz for the ground state, which describe s a continuous localization transition with mean-field exponents for $0<s<0.5$. Our results for the critical properties show good quantitiative agreement with previous numerical results, and we present a detailed description of all the spin observables as the system passes through the transition. Analysing the ansatz itself, we give an intuitive microscopic description of the transition in terms of the changing correlations between the system and bath, and show that it is always accompanied by a divergence of the low-frequency boson occupations. The possible relevance of this divergence for some numerical approaches to this problem is discussed and illustrated by looking at the ground state obtained using density matrix renormalisation group methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا