ترغب بنشر مسار تعليمي؟ اضغط هنا

Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucl eon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. The Barely Off-shell Nucleon Structure (BONuS) experiment at Jefferson Lab measured the inelastic electron deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model independent extraction of the neutron structure function. A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c. For the extraction of the free neutron structure function $F_{2n}$, spectator protons at backward angle and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Labs CLAS spectrometer. The extracted neutron structure function $F_{2n}$ and its ratio to the deuteron structure function $F_{2d}$ are presented in both the resonance and deep inelastic regions. The dependence of the cross section on the spectator proton momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed. Our data set can be used to study neutron resonance excitations, test quark hadron duality in the neutron, develop more precise parametrizations of structure functions, as well as investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first glimpse of the asymptotic behavior of d/u as x goes to 1.
After the initial discovery of the so-called spin crisis in the parton model in the 1980s, a large set of polarization data in deep inelastic lepton-nucleon scattering was collected at labs like SLAC, DESY and CERN. More recently, new high precision data at large x and in the resonance region have come from experiments at Jefferson Lab. These data, in combination with the earlier ones, allow us to study in detail the polarized parton densities, the Q^2 dependence of various moments of spin structure functions, the duality between deep inelastic and resonance data, and the nucleon structure in the valence quark region. Together with complementary data from HERMES, RHIC and COMPASS, we can put new limits on the flavor decomposition and the gluon contribution to the nucleon spin. In this report, we provide an overview of our present knowledge of the nucleon spin structure and give an outlook on future experiments. We focus in particular on the spin structure functions g_1 and g_2 of the nucleon and their moments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا