ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate high fidelity entangling quantum gates within a chain of five trapped ion qubits by optimally shaping optical fields that couple to multiple collective modes of motion. We individually address qubits with segmented optical pulses to co nstruct multipartite entangled states in a programmable way. This approach enables both high fidelity and fast quantum gates that can be scaled to larger qubit registers for quantum computation and simulation.
We demonstrate a simple pulse shaping technique designed to improve the fidelity of spin-dependent force operations commonly used to implement entangling gates in trapped-ion systems. This extension of the M{o}lmer-S{o}rensen gate can theoretically s uppress the effects of certain frequency and timing errors to any desired order and is demonstrated through Walsh modulation of a two-qubit entangling gate on trapped atomic ions. The technique is applicable to any system of qubits coupled through collective harmonic oscillator modes.
We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for 3-qubit pure states in the GHZ class. We consider a family of states known as the generalized GHZ states and derive an analytical expression relating t he 3-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with 3-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states do violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized GHZ and maximal slice states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا