ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope observations between 2001 and 2010 resolved the binary components of the Cold Classical transneptunian object (79360) Sila-Nunam (provisionally designated 1997 CS29). From these observations we have determined the circular, ret rograde mutual orbit of Nunam relative to Sila with a period of 12.50995 pm 0.00036 days and a semimajor axis of 2777 pm 19 km. A multi-year season of mutual events, in which the two near-equal brightness bodies alternate in passing in front of one another as seen from Earth, is in progress right now, and on 2011 Feb. 1 UT, one such event was observed from two different telescopes. The mutual event season offers a rich opportunity to learn much more about this barely-resolvable binary system, potentially including component sizes, colors, shapes, and albedo patterns. The low eccentricity of the orbit and a photometric lightcurve that appears to coincide with the orbital period are consistent with a system that is tidally locked and synchronized, like the Pluto-Charon system. The orbital period and semimajor axis imply a system mass of (10.84 pm 0.22) times 10^18 kg, which can be combined with a size estimate based on Spitzer and Herschel thermal infrared observations to infer an average bulk density of 0.72 +0.37 -0.23 g cm^-3, comparable to the very low bulk densities estimated for small transneptunian binaries of other dynamical classes.
We present optical colors of 72 transneptunian objects (TNOs), and infrared colors of 80 TNOs obtained with the WFPC2 and NICMOS instruments, respectively, on the Hubble Space Telescope (HST). Both optical and infrared colors are available for 32 obj ects that overlap between the datasets. This dataset adds an especially uniform, consistent and large contribution to the overall sample of colors, particularly in the infrared. The range of our measured colors is consistent with other colors reported in the literature at both optical and infrared wavelengths. We find generally good agreement for objects measured by both us and others; 88.1% have better than 2 sigma agreement. The median Hv magnitude of our optical sample is 7.2, modestly smaller (~0.5 mag) than for previous samples. The median absolute magnitude, Hv, in our infrared sample is 6.7. We find no new correlations between color and dynamical properties (semi-major axis, eccentricity, inclination and perihelion). We do find that colors of Classical objects with i<6{deg} come from a different distribution than either the Resonant or excited populations in the visible at the >99.99% level with a K-S test. The same conclusion is found in the infrared at a slightly lower significance level, 99.72%. Two Haumea collision fragments with strong near infrared ice bands are easily identified with broad HST infrared filters and point to an efficient search strategy for identifying more such objects. We find evidence for variability in (19255) 1999 VK8, 1999 OE4, 2000 CE105, 1998 KG62 and 1998 WX31.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا