ترغب بنشر مسار تعليمي؟ اضغط هنا

Dwarf spheroidal (dSph) galaxies are key objects in near-field cosmology, especially in connection to the study of galaxy formation and evolution at small scales. In addition, dSphs are optimal targets to investigate the nature of dark matter. Howeve r, while we begin to have deep optical photometric observations of the stellar population in these objects, little is known so far about their diffuse emission at any observing frequency, and hence on thermal and non-thermal plasma possibly residing within dSphs. In this paper, we present deep radio observations of six local dSphs performed with the Australia Telescope Compact Array at 16 cm wavelength. We mosaiced a region of radius of about one degree around three classical dSphs, Carina, Fornax, and Sculptor, and of about half of degree around three ultra-faint dSphs, BootesII, Segue2, and Hercules. The rms noise level is below 0.05 mJy for all the maps. The restoring beams FWHM ranged from 4.2 x 2.5 arcseconds to 30.0 x 2.1 arcseconds in the most elongated case. A catalogue including the 1392 sources detected in the six dSph fields is reported. The main properties of the background sources are discussed, with positions and fluxes of brightest objects compared with the FIRST, NVSS, and SUMSS observations of the same fields. The observed population of radio emitters in these fields is dominated by synchrotron sources. We compute the associated source number counts at 2 GHz down to fluxes of 0.25 mJy, which prove to be in agreement with AGN count models.
We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telesc ope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.
High-frequency, high-resolution imaging of the Sunyaev-Zeldovich (SZ) effect is an important technique to study the complex structures of the atmospheres of merging galaxy clusters. Such observations are sensitive to the details of the electron spect rum. We show that the morphology of the SZ intensity maps in simulated galaxy clusters observed at 345 GHz, 600 GHz, and 857 GHz are significantly different because of SZ relativistic corrections. These differences can be revealed by high-resolution imaging instruments. We calculate relativistically corrected SZ intensity maps of a simulated, massive, merging galaxy cluster and of the massive, merging clusters 1E0657-558 (the Bullet Cluster) and Abell 2219. The morphologies of the SZ intensity maps are remarkably different between 345 GHz and 857 GHz for each merging cluster. We show that high-resolution imaging observations of the SZ intensity maps at these frequencies, obtainable with the LABOCA and HERSCHEL-SPIRE instruments, allow to fully exploit the astrophysical relevance of the predicted SZ morphological effect.
(Abridged) We carried out an extensive search to identify the counterparts of all the sources listed in the WMAP 3-yr catalogue using literature and archival data. Our work led to the identification of 309 WMAP sources, 98% of which are blazars, radi o quasars or radio galaxies. At present, 15 objects still remain without identification due to the lack of optical spectroscopic data or a clear radio counterpart. Our results allow us to define a flux limited sample of 203 high Galactic latitude microwave sources ($f_{41GHz} ge 1$ Jy, $|b_{rm II}| > 15^circ$) which is virtually completely identified (99%). The microwave band is ideally suited for blazar statistical studies since this is the part of the em spectrum that is least affected by the superposition of spectral components of different origin. Using this data-set we derived number counts, luminosity functions and cosmological evolution of blazars and radio galaxies at microwave frequencies. Our results are in good agreement with those found at radio frequencies. The 5 GHz bivariate blazar luminosity functions are similar to those derived from the DXRBS survey, which shows that this sample is representative of the blazar population at 41 GHz. Microwave selected broad- lined quasars are about 6 times more abundant than BL Lacs, a ratio that is similar to, or larger than, that seen at radio and gamma-ray frequencies, once spectral selection effects are taken into account. This strongly suggests that the mechanism responsible for the generation of gamma-rays is, at first order, the same in all blazar types. Our results confirm the findings of Giommi & Colafrancesco (2004, 2006) that blazars and radio galaxies are the largest contaminants of the CMB anisotropy maps. We predict that these sources are also bright gamma-ray sources, most of which will be detected by AGILE and FERMI.
We present the results of a series of optical, UV, X-ray and gamma-ray observations of the BL Lac object S50716+714 carried out by the Swift and AGILE satellites in late 2007 when this blazar was flaring close to its historical maximum at optical fre quencies. We have found that the optical through soft X-ray emission, likely due to Synchrotron radiation, was highly variable and displayed a different behavior in the optical UV and soft X-ray bands. The 4-10 keV flux, most probably dominated by the inverse Compton component, remained instead constant. The counting statistics in the relatively short AGILE GRID observation was low and consistent with a constant gamma-ray flux at a level similar to the maximum observed by EGRET. An estimate of the gamma-ray spectral slope gives a value of the photon index that is close to 2 suggesting that the peak of the inverse Compton component in the Spectral Energy Distribution (SED) is within the AGILE energy band. The different variability behavior observed in different parts of the SED exclude interpretations predicting highly correlated flux variability like changes of the beaming factor or of the magnetic field in simple SSC scenarios. The observed SED changes may instead be interpreted as due to the sum of two SSC components, one of which is constant while the other is variable and with a systematically higher synchrotron peak energy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا