ترغب بنشر مسار تعليمي؟ اضغط هنا

75 - S. Cebrian , J. Perez , I. Bandac 2015
The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low backg round conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.
78 - S. Cebrian , J. Perez , I. Bandac 2014
The Neutrino Experiment with a Xenon Time-Projection Chamber (NEXT) is intended to investigate the neutrinoless double beta decay of 136Xe, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection process is underway to control the radiopurity levels of the materials to be used in the experimental set-up of NEXT. The detector design combines the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. Separate energy and tracking readout planes are based on different sensors: photomultiplier tubes for calorimetry and silicon multi-pixel photon counters for tracking. The design of a radiopure tracking plane, in direct contact with the gas detector medium, was specially challenging since the needed components like printed circuit boards, connectors, sensors or capacitors have typically, according to available information in databases and in the literature, activities too large for experiments requiring ultra-low background conditions. Here, the radiopurity assessment of tracking readout components based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) is described. According to the obtained results, radiopure enough printed circuit boards made of kapton and copper, silicon photomultipliers and other required components, fulfilling the requirement of an overall background level in the region of interest of at most 8 10-4 counts keV-1 kg-1 y-1, have been identified.
87 - J. Amare , S. Cebrian , C. Cuesta 2014
ANAIS (Annual modulation with NAI Scintillators) experiment aims to look for dark matter annual modulation with 250 kg of ultrapure NaI(Tl) scintillators at the Canfranc Underground Laboratory (LSC), in order to confirm the DAMA/LIBRA positive signal in a model-independent way. The detector will consist in an array of close-packed single modules, each of them coupled to two high efficiency Hamamatsu photomultipliers. Two 12.5 kg each NaI(Tl) crystals provided by Alpha Spectra are currently taking data at the LSC. These modules have shown an outstanding light collection efficiency (12-16 phe/keV), about the double of that from DAMA/LIBRA phase 1 detectors, which could enable reducing the energy threshold down to 1 keVee. ANAIS crystal radiopurity goals are fulfilled for 232Th and 238U chains, assuming equilibrium, and in the case of 40K, present crystals activity (although not at the required 20 ppb level) could be acceptable. However, a 210Pb contamination out-of-equilibrium has been identified and its origin traced back, so we expect it will be avoided in next prototypes. Finally, current status and prospects of the experiment considering several exposure and background scenarios are presented.
The CERN Axion Solar Telescope (CAST) experiment searches for axions from the Sun converted into photons with energies up to around 10 keV via the inverse Primakoff effect in the high magnetic field of a superconducting Large Hadron Collider (LHC) pr ototype magnet. A backside illuminated pn-CCD detector in conjunction with an X-ray mirror optics is one of the three detectors used in CAST to register the expected photon signal. Since this signal is very rare and different background components (environmental gamma radiation, cosmic rays, intrinsic radioactive impurities in the set-up, ...) entangle it, a detailed study of the detector background has been undertaken with the aim to understand and further reduce the background level of the detector. The analysis is based on measured data taken during the Phase I of CAST and on Monte Carlo simulations of different background components. This study will show that the observed background level (at a rate of (8.00+-0.07)10^-5 counts/cm^2/s/keV between 1 and 7 keV) seems to be dominated by the external gamma background due to usual activities at the experimental site, while radioactive impurities in the detector itself and cosmic neutrons could make just smaller contribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا