ترغب بنشر مسار تعليمي؟ اضغط هنا

86 - S. Brouard , J. Plata 2015
The conversion of ultracold atoms to molecules via a magnetic Feshbach resonance with a sinusoidal modulation of the field is studied. Different practical realizations of this method in Bose atomic gases are analyzed. Our model incorporates many-body effects through an effective reduction of the complete microscopic dynamics. Moreover, we simulate the experimental conditions corresponding to the preparation of the system as a thermal gas and as a condensate. Some of the experimental findings are clarified. The origin of the observed dependence of the production efficiency on the frequency, amplitude, and application time of the magnetic modulation is elucidated. Our results uncover also the role of the atomic density in the dynamics, specifically, in the observed saturation of the atom-molecule conversion process.
46 - S. Brouard , J. Plata 2011
We study the effect of noise on the axial mode of an electron in a Penning trap under parametric-resonance conditions. Our approach, based on the application of averaging techniques to the description of the dynamics, provides an understanding of the random phase flips detected in recent experiments. The observed correlation between the phase jumps and the amplitude collapses is explained. Moreover, we discuss the actual relevance of noise color to the identified phase-switching mechanism. Our approach is then generalized to analyze the persistence of the stochastic phase flips in the dynamics of a cloud of N electrons. In particular, we characterize the detected scaling of the phase-jump rate with the number of electrons.
We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence d epending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا