ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon-spin rotation (muSR) experiments are often used to study the magnetic field distribution in type-II superconductors in the vortex state. Based on the determination of the magnetic penetration depth it is frequently speculated---also controversia lly---about the order-parameter symmetry of the studied superconductors. This article reports on a combined muSR and magnetization study of the mixed state in the cuprate high-temperature superconductor La_{1.83}Sr_{0.17}CuO_{4} in a low magnetic field of 20 mT applied along the c axis of a single crystal. The macroscopic magnetization measurements reveal substantial differences for various cooling procedures. Yet, indicated changes in the vortex dynamics between different temperature regions as well as the results of the microscopic muSR experiments are virtually independent of the employed cooling cycles. Additionally, it is found that the mean magnetic flux density, locally probed by the muons, strongly increases at low temperatures. This can possibly be explained by a non-random sampling of the spatial field distribution of the vortex lattice in this cuprate superconductor caused by intensified vortex pinning.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا