ترغب بنشر مسار تعليمي؟ اضغط هنا

CONTEXT: The Virgo direction has been observed at many wavelengths in the recent years, in particular in the ultraviolet with GALEX. The far ultraviolet (FUV) diffuse light detected by GALEX bears interesting information on the large scale distributi on of Galactic dust, owing to the GALEX FUV band sensitivity and resolution. AIMS: We aim to characterise the ultraviolet large scale distribution of diffuse emission in the Virgo direction. A map of this emission may become useful for various studies by identifying regions where dust affects observations by either scattering light or absorbing radiation. METHODS: We construct mosaics of the FUV and near ultraviolet diffuse emission over a large sky region (RA 12 to 13 hours, DEC 0 to 20 degrees) surrounding the Virgo cluster, using all the GALEX available data in the area. We test for the first time the utilisation of the FUV diffuse light as a Galactic extinction E(B-V) tracer. RESULTS: The FUV diffuse light scattered on cirrus reveals details in their geometry. Despite a large dispersion, the FUV diffuse light correlates roughly with other Galactic dust tracers (coming from IRAS, Herschel, Planck), offering an opportunity to use the FUV emission to locate them in future studies with a better resolution (about 5 arcsec native resolution, 20 arcsec pixels maps presented in this paper) than several usual tracers. Estimating the Galactic dust extinction on the basis of this emission allows us to find a smaller dispersion in the NUV-i colour of background galaxies at a given E(B-V)than with other tracers. The diffuse light mosaics obtained in this work are made publicly available.
We study the role of the environment on galaxy evolution using a sample of 868 galaxies in the Virgo cluster and in its surrounding regions selected from the GUViCS Survey with the purpose of understanding the origin of the red sequence in dense envi ronments. We collected multifrequency data covering the whole electromagnetic spectrum for most of the galaxies. We identify the different dynamical substructures composing the Virgo cluster and we calculate the local density of galaxies using different methods. We then study the distribution of galaxies belonging to the red sequence, the green valley, and the blue cloud within the different cluster substructures. Our analysis indicates that all the most massive galaxies are slow rotators and are the dominant galaxies of the different cluster substructures generally associated with a diffuse X-ray emission. They are probably the result of major merging events that occurred at early epochs. Slow rotators of lower stellar mass are also preferentially located within the different high-density substructures of the cluster. They are virialised within the cluster, thus Virgo members since its formation. They have been shaped by gravitational perturbations occurring within the infalling groups that later formed the cluster. On the contrary, low-mass star-forming systems are extremely rare in the inner regions of the Virgo cluster A, where the density of the intergalactic medium is at its maximum. Our ram pressure stripping models consistently indicate that these star-forming systems can be rapidly deprived of their interstellar medium during their interaction with the intergalactic medium. The lack of gas quenches their star formation activity transforming them into quiescent dwarf ellipticals. This mild transformation does not perturb the kinematic properties of these galaxies which still have rotation curves typical of star-forming systems.
(Abridged) We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey, using extinction-corrected UV, optical and near-infrared radial profiles to probe the emission of stars of different ages as a function of radiu s. We fit these profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward models succesfully reproduce the multi-wavelength profiles of our galaxies, except the UV profiles of some early-type disks. From the model fitting we infer the maximum circular velocity of the rotation curve (Vc) and the dimensionless spin parameter (lambda). The values of Vc are in good agreement with the velocities measured in HI rotation curves. While our sample is not volume-limited, the resulting distribution of spins is close to the lognormal function obtained in cosmological N-body simulations, peaking at ~0.03 regardless of the total halo mass. We do not find any evident trend between spin and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale-lengths as they become more massive. The radial scale-length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc/Gyr, being now 20-25% larger than at z=1.
The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) is a complete blind survey of the Virgo cluster covering about 40 sq. deg. in the far UV (FUV, lambda_eff=1539A, Delta-lambda=442A) and about 120 sq. deg. in the near UV (NUV, lambda_eff=2316A, Delt a-lambda=1060A). The goal of the survey is to study the ultraviolet (UV) properties of galaxies in a rich cluster environment, spanning a wide luminosity range from giants to dwarfs, and regardless of prior knowledge of their star formation activity. The UV data will be combined with those in other bands (optical: NGVS; far-infrared - submm: HeViCS; HI: ALFALFA) and with our multizone chemo-spectrophotometric models of galaxy evolution to make a complete and exhaustive study of the effects of the environment on the evolution of galaxies in high density regions. We present here the scientific objectives of the survey, describing the observing strategy and briefly discussing different data reduction techniques. Using UV data already in-hand for the central 12 sq. deg. we determine the FUV and NUV luminosity functions of the Virgo cluster core for all cluster members and separately for early- and late-type galaxies and compare it to the one obtained in the field and other nearby clusters (Coma, A1367). This analysis shows that the FUV and NUV luminosity functions of the core of the Virgo clusters are flatter (alpha about -1.1) than those determined in Coma and A1367. We discuss the possible origin of this difference
We use Halpha and FUV GALEX data for a large sample of nearby objects to study the high mass star formation activity of normal late-type galaxies. The data are corrected for dust attenuation using the most accurate techniques at present available, na mely the Balmer decrement and the total far-infrared to FUV flux ratio. The sample shows a highly dispersed distribution in the Halpha to FUV flux ratio indicating that two of the most commonly used star formation tracers give star formation rates with uncertainties up to a factor of 2-3. The high dispersion is due to the presence of AGN, where the UV and the Halpha emission can be contaminated by nuclear activity, highly inclined galaxies, for which the applied extinction corrections are probably inaccurate, or starburst galaxies, where the stationarity in the star formation history required for transforming Halpha and UV luminosities into star formation rates is not satisfied. Excluding these objects we reach an uncertainty of ~50% on the SFR. The Halpha to FUV flux ratio increases with their total stellar mass. If limited to normal star forming galaxies, however, this relationship reduces to a weak trend that might be totally removed using different extinction correction recipes. In these objects the Halpha to FUV flux ratio seems also barely related with the FUV-H colour, the H band effective surface brightness, the total star formation activity and the gas fraction. The data are consistent with a Kroupa and Salpeter initial mass function in the high mass stellar range and imply, for a Salpeter IMF, that the variations of the slope cannot exceed 0.25, from g=2.35 for massive galaxies to g=2.60 in low luminosity systems. We show however that these observed trends, if real, can be due to the different micro history of star formation in massive galaxies with respect to dwarf.
We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of UV, IR and HI surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal extinction, derived from the TIR-to-FUV luminosity ratio, decreases with radius, and is larger in Sb-Sbc galaxies. The TIR-to-FUV ratio correlates with the UV spectral slope beta, following a sequence shifted to redder UV colors with respect to that of starbursts. The star formation history (SFH) is identified as the main driver of this departure. We have also derived radial profiles of the total dust mass surface density, the fraction of the dust mass contributed by PAHs, the fraction of the dust mass heated by very intense starlight and the intensity of the radiation field heating the grains. The dust profiles are exponential, their radial scale-length being constant from Sb to Sd galaxies (only ~10% larger than the stellar scale-length). Many S0/a-Sab galaxies have central depressions in their dust radial distributions. The PAH abundance increases with metallicity for 12+log(O/H)<9, and at larger metallicities the trend flattens and even reverses, with the SFH being a plausible underlying driver for this behavior. The dust-to-gas ratio is also well correlated with metallicity and therefore decreases with galactocentric radius.
55 - S. Boissier 2009
Context: Stellar evolution theory suggests that the relationship between number ratios of supernova (SN) types and metallicity holds important clues as to the nature of the progenitor stars (mass, metallicity, rotation, binarity, etc). Aims: We inves tigate the metallicity dependence of number ratios of various SN types, using a large sample of SN along with information on their radial position in, and magnitude of, their host galaxy. Methods: We derive typical galaxian metallicities (using the well known metallicity-luminosity relation) and local metallicities, i.e. at the position of the SN; in the latter case, we use the empirical fact that the metallicity gradients in disk galaxies are ~ constant when expressed in dex/R25. Results: We confirm a dependence of the N(Ibc)/N(II) ratio on metallicity; recent single star models with rotation and binary star models with no rotation appear to reproduce equally well that metallicity dependence. The size of our sample does not allow significant conclusions on the N(Ic)/N(Ib) ratio. Finally, we find an unexpected metallicity dependence of the ratio of thermonuclear to core collapse supernovae, which we interpret in terms of the star formation properties of the host galaxies.
The present work is aimed at studying the distribution of galaxies of different types and luminosities along different structural scaling relations to see whether massive and dwarf ellipticals have been shaped by the same formation process. This exer cise is here done by comparing the distribution of Virgo cluster massive and dwarf ellipticals and star forming galaxies along the B band effective surface brightness and effective radius vs. absolute magnitude relations and the Kormendy relation to the predictions of models tracing the effects of ram-pressure stripping on disc galaxies entering the cluster environment and galaxy harassment. Dwarf ellipticals might have been formed from low luminosity, late-type spirals that recently entered into the cluster and lost their gas because of a ram-pressure stripping event, stopping their activity of star formation. The perturbations induced by the abrupt decrease of the star formation activity are sufficient to modify the structural properties of disc galaxies into those of dwarf ellipticals. Galaxy harassment induce a truncation of the disc and generally an increase of the effective surface brightness of the perturbed galaxies. The lack of dynamical simulations of perturbed galaxies spanning a wide range in luminosity prevents us to drive any firm conclusion on a possible harassment-induced origin of the low surface brightness dwarf elliptical galaxy population inhabiting the Virgo cluster. Although the observed scaling relations are consistent with the idea that the distribution of elliptical galaxies along the mentioned scaling relation is just due to a gradual variation with luminosity of the Sersic index n, the comparison with models indicates that dwarf ellipticals might have been formed by a totally different process than giant ellipticals
We present GALEX UV observations of a sample of Low Surface Brightness (LSB) galaxies for which HI data are available, allowing us to estimate their star formation efficiency. We find that the UV light extends to larger radii than the optical light ( some galaxies, but not all, look similar to the recently discovered XUV-disk galaxies). Using a standard calibration to convert the UV light into star formation rates, we obtain lower star formation efficiencies in LSB galaxies than in high surface brightness galaxies by about one order of magnitude. We show however that standard calibrations may not apply to these galaxies, as the FUV-NUV color obtained from the two GALEX bands (FUV and NUV; lambda_eff= 1516 and 2267 A, respectively) is redder than expected for star forming galaxies. This color can be interpreted as a result of internal extinction, modified Initial Mass Function or by star formation histories characterized by bursts followed by quiescent phases. Our analysis favors this latter hypothesis.
We investigate whether the mean star formation activity of star-forming galaxies from z=0 to z=0.7 in the GOODS-S field can be reproduced by simple evolution models of these systems. In this case, such models might be used as first order references f or studies at higher z to decipher when and to what extent a secular evolution is sufficient to explain the star formation history in galaxies. We selected star-forming galaxies at z=0 and at z=0.7 in IR and in UV to have access to all the recent star formation. We focused on galaxies with a stellar mass ranging between 10^{10} and 10^{11} M_sun for which the results are not biased by the selections. We compared the data to chemical evolution models developed for spiral galaxies and originally built to reproduce the main characteristics of the Milky Way and nearby spirals without fine-tuning them for the present analysis. We find a shallow decrease in the specific star formation rate (SSFR) when the stellar mass increases. The evolution of the SSFR characterizing both UV and IR selected galaxies from z=0 to z=0.7 is consistent with the models built to reproduce the present spiral galaxies. There is no need to strongly modify of the physical conditions in galaxies to explain the average evolution of their star formation from z=0 to z=0.7. We use the models to predict the evolution of the star formation rate and the metallicity on a wider range of redshift and we compare these predictions with the results of semi-analytical models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا