ترغب بنشر مسار تعليمي؟ اضغط هنا

310 - A. Zech , J.-P. Amans , S. Blake 2013
The Cherenkov Telescope Array (CTA) will be the worlds first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers i n the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to allow for a wide field of view with a light-weight camera, e.g. using GAPDs or multi-anode photomultipliers. One objective of the GATE (Gamma-ray Telescope Elements) programme is to build one of the first Schwarzschild-Couder prototypes and to evaluate its performance. The construction of the SST-GATE prototype on the campus of the Paris Observatory in Meudon is under way. We report on the current status of the project and provide details of the opto-mechanical design of the prototype, the development of its control software, and simulations of its expected performance.
From a deep multi-epoch Chandra observation of the elliptical galaxy NGC 3379 we report the spectral properties of eight luminous LMXBs (LX>1.2E38 erg/s). We also present a set of spectral simulations, produced to aid the interpretation of low-count single-component spectral modeling. These simulations demonstrate that it is possible to infer the spectral states of X-ray binaries from these simple models and thereby constrain the properties of the source. Of the eight LMXBs studied, three reside within globular clusters, and one is a confirmed field source. Due to the nature of the luminosity cut all sources are either neutron star binaries emitting at or above the Eddington luminosity or black hole binaries. The spectra from these sources are well described by single-component models, with parameters consistent with Galactic LMXB observations, where hard-state sources have a range in photon index of 1.5-1.9 and thermally dominated sources have inner disc temperatures between ~0.7-1.55 keV. The large variability observed in the brightest globular cluster source (LX>4E38 erg/s) suggests the presence of a black hole binary. At its most luminous this source is observed in a thermally dominated state with kT=1.5 keV, consistent with a black hole mass of ~4 Msol. This observation provides further evidence that globular clusters are able to retain such massive binaries. We also observed a source transitioning from a bright state (LX~1E39 erg/s), with prominent thermal and non-thermal components, to a less luminous hard state (LX=3.8E38 erg/s, Gamma=1.85). In its high flux emission this source exhibits a cool-disc component of ~0.14 keV, similar to spectra observed in some ultraluminous X-ray sources. Such a similarity indicates a possible link between `normal stellar mass black holes in a high accretion state and ULXs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا