ترغب بنشر مسار تعليمي؟ اضغط هنا

119 - S. Valdre , S. Barlini , G. Casini 2013
The 48Ti on 40Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Indeed, in this mass region (A about 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible preequilibrium emissions from 300 to 600 MeV bombarding energy.
The european Fazia collaboration aims at building a new modular array for charged product identification to be employed for heavy-ion studies. The elementary module of the array is a Silicon-Silicon-CsI telescope, optimized for ion identification als o via pulse shape analysis. The achievement of top performances imposes specific electronics which has been developed by FAZIA and features high quality charge and current preamplifiers, coupled to fully digital front-end. During the initial R&D phase, original and novel solutions have been tested in prototypes, obtaining unprecedented ion identification capabilities. FAZIA is now constructing a demonstrator array consisting of about two hundreds telescopes arranged in a compact and transportable configuration. In this contribution, we mainly summarize some aspects studied by FAZIA to improve the ion identification. Then we will briefly discuss the FAZIA program centered on experiments to be done with the demonstrator. First results on the isospin dynamics obtained with a reduced set-up demonstrate well the performance of the telescope and represent a good starting point towards future investigations with both stable and exotic beams.
Isotopically resolved fragments with Z<=20 have been studied with high resolution telescopes in a test run for the FAZIA collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich (124Sn) and a n-poor ( 112Sn) target. The fragments, detected close to the grazing angle, are mainly emitted from the phase-space region of the projectile. The fragment isotopic content clearly depends on the n-richness of the target and it is a direct evidence of isospin diffusion between projectile and target. The observed enhanced neutron richness of light fragments emitted from the phase-space region close to the center of mass of the system can be interpreted as an effect of isospin drift in the diluted neck region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا