ترغب بنشر مسار تعليمي؟ اضغط هنا

This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of accreting white dwarfs. For a summary, we refer to the paper.
61 - S. Balman 2014
Diversity of the X-ray observations of dwarf nova are still not fully understood. I review the X-ray spectral characteristics of dwarf novae during the quiescence in general explained by cooling flow models and the outburst spectra that show hard X-r ay emission dominantly with few sources that reveal soft X-ray/EUV blackbody emission. The nature of aperiodic time variability of brightness of dwarf novae shows band limited noise, which can be adequately described in the framework of the model of propagating fluctuations. The frequency of the break (1-6 mHz) indicates inner disk truncation of the optically thick disk with a range of radii (3.0-10.0)$times$10$^{9}$ cm. The RXTE and optical (RTT150) data of SS Cyg in outburst and quiescence reveal that the inner disk radius moves towards the white dwarf and receeds as the outburst declines to quiescence. A preliminary analysis of SU UMa indicates a similar behaviour. In addition, I find that the outburst spectra of WZ Sge shows two component spectrum of only hard X-ray emission, one of which may be fitted with a power law suggesting thermal Comptonization occuring in the system. Cross-correlations between the simultaneous UV and X-ray light curves (XMM-Newton) of five DNe in quiescence show time lags in the X-rays of 96-181 sec consistent with travel time of matter from a truncated inner disk to the white dwarf surface. All this suggests that dwarf novae and other plausible nonmagnetic systems have truncated accretion disks indicating that the disks may be partially evaporated and the accretion may occur through hot (coronal) flows in the disk.
125 - S. Balman , P. Godon , E.M. Sion 2011
We present an analysis of X-ray and UV data obtained with the XMM-Newton Observatory of the long period dwarf nova RU Peg. RU Peg contains a massive white dwarf, possibly the hottest white dwarf in a dwarf nova, it has a low inclination, thus optimal ly exposing its X-ray emitting boundary layer, and has an excellent trigonometric parallax distance. We modeled the X-ray data using XSPEC assuming a multi-temperature plasma emission model built from the MEKAL code. We obtained a maximum temperature of 31.7 keV, based on the EPIC MOS1, 2 and pn data, indicating that RU Peg has an X-ray spectrum harder than most dwarf novae, except U Gem. This result is consistent with and indirectly confirms the large mass of the white dwarf in RU Peg. The X-ray luminosity we computed corresponds to a boundary layer luminosity for a mass accretion rate of 2.E-11 Msun/yr (assuming Mwd=1.3Msun), in agreement with an expected quiescent accretion rate. The modeling of the O VIII emission line at 19A as observed by the RGS implies a projected stellar rotational velocity of 695 km/s, i.e. the line is emitted from material rotating at about 936-1245 km/s (for i about 34-48deg) or about 1/6 of the Keplerian speed; this velocity is much larger than the rotation speed of the white dwarf inferred from the FUSE spectrum. Cross-correlation analysis yielded an undelayed component and a delayed component of 116 +/- 17 sec where the X-ray variations/fluctuations lagged the UV variations. This indicates that the UV fluctuations in the inner disk are propagated into the X-ray emitting region in about 116 sec. The undelayed component may be related to irradiation effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا