ترغب بنشر مسار تعليمي؟ اضغط هنا

89 - S. Baier , M. J. Mark , D. Petter 2015
The Hubbard model underlies our understanding of strongly correlated materials. While its standard form only comprises interaction between particles at the same lattice site, its extension to encompass long-range interaction, which activates terms ac ting between different sites, is predicted to profoundly alter the quantum behavior of the system. We realize the extended Bose-Hubbard model for an ultracold gas of strongly magnetic erbium atoms in a three-dimensional optical lattice. Controlling the orientation of the atomic dipoles, we reveal the anisotropic character of the onsite interaction and hopping dynamics, and their influence on the superfluid-to-Mott insulator quantum phase transition. Moreover, we observe nearest-neighbor interaction, which is a genuine consequence of the long-range nature of dipolar interactions. Our results lay the groundwork for future studies of novel exotic many-body quantum phases.
102 - K. Aikawa , S. Baier , A. Frisch 2014
The deformation of a Fermi surface is a fundamental phenomenon leading to a plethora of exotic quantum phases. Understanding these phases, which play crucial roles in a wealth of systems, is a major challenge in atomic and condensed-matter physics. H ere, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا