ترغب بنشر مسار تعليمي؟ اضغط هنا

We present study of derivatives of current-voltage I(V) characteristics of point-contacts (PCs) based on Ba{1-x}Na{x}Fe2As2 (x=0.25) in the normal and superconducting state. The detailed analysis of dV/dI(V) data (also given in Appendix A) shows that the thermal regime, when temperature increases with a voltage at a rate of about 1.8 K/mV, is realized in the investigated PCs at least at high biases V above the superconducting (SC) gap Delta. In this case, specific resistivity rho (T) in PC core is responsible for a peculiar dV/dI(V) behavior, while a pronounced asymmetry of dV/dI(V) is caused by large value of thermopower in this material. A reproducible zero-bias minima detected on dV/dI(V) at low biases in the range pm(6--9)mV well below the SC critical temperature T_c could be connected with the manifestation of the SC gap Delta. Evaluation of these Andreev-reflection-like structures on dV/dI(V) points out to the preferred value of 2Delta/kT_c approx 6. The expected second gap features on dV/dI(V) are hard to resolve unambiguously, likely due to impurity scattering, spatial inhomogeneity and transition to the mentioned thermal regime as the bias further increases. Suggestions are made how to separate spectroscopic features in dV/dI(V) from those caused by the thermal regime.
From the measurement and analysis of the specific heat of high-quality K_(1-x)Na_xFe_2As_2 single crystals we establish the presence of large T^2 contributions with coefficients alpha_sc ~ 30 mJ/mol K^3 at low-T for both x=0 and 0.1. Together with th e observed square root field behavior of the specific heat in the superconducting state both findings evidence d-wave superconductivity on almost all Fermi surface sheets with an average gap amplitude of Delta_0 in the range of 0.4 - 0.8 meV. The derived Delta_0 and the observed T_c agree well with the values calculated within the Eliashberg theory, adopting a spin-fluctuation mediated pairing in the intermediate coupling regime.
Measurements of magneto-resistivity and magnetic susceptibility were performed on single crystals of superconducting Ba(Fe$_{0.9}$Co$_{0.1}$)$_{2}$As$_{2}$ close to the conditions of optimal doping. The high quality of the investigated samples allows us to reveal a dynamic scaling behaviour associated with a vortex-glass phase transition in the limit of weak degree of quenched disorder. Accordingly, the dissipative component of the ac susceptibility is well reproduced within the framework of Havriliak-Negami relaxation, assuming a critical power-law divergence for the characteristic correlation time $tau$ of the vortex dynamics. Remarkably, the random disorder introduced by the Fe$_{1-x}$Co$_{x}$ chemical substitution is found to act on the vortices as a much weaker quenched disorder than previously reported for cuprate superconductors such as, e.g., Y$_{1-x}$Pr$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$.
High-quality KFe2As2 single crystals have been studied by transport, magnetization and low-T specific heat measurements. Their analysis shows that superconductivity occurs (in some cases coexists) in the vicinity of disordered magnetic phases (Griffi ths and spin-glass type) depending of the amount of local magnetic moments (probably excess Fe derived)and sample inhomogeneity. The achieved phenomenological description of our data including also data from the literature provides a consistent explanation of the observed non-Fermi-liquid behavior and of the nominally large experimental Sommerfeld coefficient gamma_n about 94 mJ/mol K^2. We suggest that the intrinsic value (directly related to the itinerant quasi-particles) gamma_el about 60(10)mJ/mol K^2 is significantly reduced compared with gamma_n. Then an enhanced relative jump of the electronic specific heat Delta C_el/gamma_el T_c about 0.8 and a weak total electron-boson coupling constant lambda less or about 1 follow.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا