ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new constraints on the relationship between galaxies and their host dark matter halos, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift $zsim0.8$ and over a volume of nearly 0.1~Gpc$^3$. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by $sim60,000$ secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at $M_{rm h, peak} = 1.9^{+0.2}_{-0.1}times10^{12} M_{odot}$ with an amplitude of $0.025$, which decreases to $sim0.001$ for massive halos ($M_{rm h} > 10^{14} M_{odot}$). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor 10 in the high-mass regime (cluster-size halos), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to $z=1$: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (${M}_{star} < 10^{11} M_{odot}$) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxies.
The relation between the stellar mass and the star formation rate characterizes how the instantaneous star formation is determined by the galaxy past star formation history and by the growth of the dark matter structures. We deconstruct the M-SFR pla ne by measuring the specific SFR functions in several stellar mass bins from z=0.2 out to z=1.4. Our analysis is primary based on a MIPS 24$mu m$ selected catalogue combining the COSMOS and GOODS surveys. We estimate the SFR by combining mid- and far-infrared data for 20500 galaxies. The sSFR functions are derived in four stellar mass bins within the range 9.5<log(M/Msun)<11.5. First, we demonstrate the importance of taking into account selection effects when studying the M-SFR relation. Secondly, we find a mass-dependent evolution of the median sSFR with redshift varying as $sSFR propto (1+z)^{b}$, with $b$ increasing from $b=2.88$ to $b=3.78$ between $M=10^{9.75}Msun$ and $M=10^{11.1}Msun$, respectively. At low masses, this evolution is consistent with the cosmological accretion rate and predictions from semi-analytical models (SAM). This agreement breaks down for more massive galaxies showing the need for a more comprehensive description of the star-formation history in massive galaxies. Third, we obtain that the shape of the sSFR function is invariant with time at z<1.4 but depends on the mass. We observe a broadening of the sSFR function ranging from 0.28 dex at $M=10^{9.75}Msun$ to 0.46 dex at $M=10^{11.1}Msun$. Such increase in the scatter of the M-SFR relation suggests an increasing diversity of SFHs as the stellar mass increases. Finally, we find a gradual decline of the sSFR with mass as $log(sSFR) propto -0.17M$. We discuss the numerous physical processes, as gas exhaustion in hot gas halos or secular evolution, which can gradually reduce the sSFR and increase the SFH diversity.
Here we introduce PHAT, the PHoto-z Accuracy Testing programme, an international initiative to test and compare different methods of photo-z estimation. Two different test environments are set up, one (PHAT0) based on simulations to test the basic fu nctionality of the different photo-z codes, and another one (PHAT1) based on data from the GOODS survey. The accuracy of the different methods is expressed and ranked by the global photo-z bias, scatter, and outlier rates. Most methods agree well on PHAT0 but produce photo-z scatters that can differ by up to a factor of two even in this idealised case. A larger spread in accuracy is found for PHAT1. Few methods benefit from the addition of mid-IR photometry. Remaining biases and systematic effects can be explained by shortcomings in the different template sets and the use of priors on the one hand and an insufficient training set on the other hand. Scatters of 4-8% in Delta_z/(1+z) were obtained, consistent with other studies. However, somewhat larger outlier rates (>7.5% with Delta_z/(1+z)>0.15; >4.5% after cleaning) are found for all codes. There is a general trend that empirical codes produce smaller biases than template-based codes. The systematic, quantitative comparison of different photo-z codes presented here is a snapshot of the current state-of-the-art of photo-z estimation and sets a standard for the assessment of photo-z accuracy in the future. The rather large outlier rates reported here for PHAT1 on real data should be investigated further since they are most probably also present (and possibly hidden) in many other studies. The test data sets are publicly available and can be used to compare new methods to established ones and help in guiding future photo-z method development. (abridged)
(abridged abstract) We present an analysis of the stellar mass growth over the last 10 Gyrs using a large 3.6$mu$ selected sample. We split our sample into active (blue) and quiescent (red) galaxies. Our measurements of the K-LFs and LD evolution sup port the idea that a large fraction of galaxies is already assembled at $zsim 1.2$. Based on the analysis of the evolution of the stellar mass-to-light ratio (in K-band) for the spectroscopic sub-sample, we derive the stellar mass density for the entire sample. We find that the global evolution of the stellar mass density is well reproduced by the star formation rate derived from UV dust corrected measurements. Over the last 8Gyrs, we observe that the stellar mass density of the active population remains approximately constant while it gradually increases for the quiescent population over the same timescale. As a consequence, the growth of the stellar mass in the quiescent population must be due to the shutoff of star formation in active galaxies that migrate into the quiescent population. From $z=2$ to $z=1.2$, we observe a major build-up of the quiescent population with an increase by a factor of 10 in stellar mass, suggesting that we are observing the epoch when an increasing fraction of galaxies are ending their star formation activity and start to build up the red sequence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا