ترغب بنشر مسار تعليمي؟ اضغط هنا

The dimerized quantum magnet BaCuSi$_2$O$_6$ was proposed as an example of dimensional reduction arising near the magnetic-field-induced quantum critical point (QCP) due to perfect geometrical frustration of its inter-bilayer interactions. We demonst rate by high-resolution neutron spectroscopy experiments that the effective intra-bilayer interactions are ferromagnetic, thereby excluding frustration. We explain the apparent dimensional reduction by establishing the presence of three magnetically inequivalent bilayers, with ratios 3:2:1, whose differing interaction parameters create an extra field-temperature scaling regime near the QCP with a non-trivial but non-universal exponent. We demonstrate by detailed quantum Monte Carlo simulations that the magnetic interaction parameters we deduce can account for all the measured properties of BaCuSi$_2$O$_6$, opening the way to a quantitative understanding of non-universal scaling in any modulated layered system.
In this report, we present a wide variety of ways in which information from multiple probes of dark energy may be combined to obtain additional information not accessible when they are considered separately. Fundamentally, because all major probes ar e affected by the underlying distribution of matter in the regions studied, there exist covariances between them that can provide information on cosmology. Combining multiple probes allows for more accurate (less contaminated by systematics) and more precise (since there is cosmological information encoded in cross-correlation statistics) measurements of dark energy. The potential of cross-correlation methods is only beginning to be realized. By bringing in information from other wavelengths, the capabilities of the existing probes of dark energy can be enhanced and systematic effects can be mitigated further. We present a mixture of work in progress and suggestions for future scientific efforts. Given the scope of future dark energy experiments, the greatest gains may only be realized with more coordination and cooperation between multiple project teams; we recommend that this interchange should begin sooner, rather than later, to maximize scientific gains.
133 - E.R.P. Novais 2013
The magnetic vortex structure, that is present in several nanoscopic systems, is stable and can be manipulated through the application of a magnetic field or a spin polarized current. The size and shape of the core are strongly affected by the anisot ropy, however its role on the core behavior has not yet been clarified. In the present work we investigate the influence of a perpendicular anisotropy on the annihilation and shape of magnetic vortex cores in permalloy disks. We have used both micromagnetic simulations with the OOMMF code, and an analytical model that assumes that the shape of the core does not change during the hysteresis cycle, known as the rigid core model, to calculate the annihilation fields. In both cases we found that the annihilation fields decrease with increasing perpendicular anisotropy for almost all the structures investigated. The simulations show that for increasing anisotropy or dot thickness, or both, the vortex core profile changes its shape, becoming elongated. For every dot thickness, this change does not depend on the dot radius, but on the relative distance of the core from the center of the dot.
The hysteresis curves of multilayer microwires consisting of a soft magnetic nucleus, intermediate non-magnetic layers, and an external hard magnetic layer are investigated. The magnetostatic interaction between magnetic layers is proved to give rise to an antiferromagnetic-like coupling resulting in a magnetostatic bias in the hysteresis curves of the soft nucleus. This magnetostatic biasing effect is investigated in terms of the microwire geometry. The experimental results are interpreted considering an analytical model taking into account the magnetostatic interaction between the magnetic layers.
The difference between faults and errors is that, unlike faults, errors can be corrected using control codes. In classical test and verification one develops a test set separating a correct circuit from a circuit containing any considered fault. Clas sical faults are modelled at the logical level by fault models that act on classical states. The stuck fault model, thought of as a lead connected to a power rail or to a ground, is most typically considered. A classical test set complete for the stuck fault model propagates both binary basis states, 0 and 1, through all nodes in a network and is known to detect many physical faults. A classical test set complete for the stuck fault model allows all circuit nodes to be completely tested and verifies the function of many gates. It is natural to ask if one may adapt any of the known classical methods to test quantum circuits. Of course, classical fault models do not capture all the logical failures found in quantum circuits. The first obstacle faced when using methods from classical test is developing a set of realistic quantum-logical fault models. Developing fault models to abstract the test problem away from the device level motivated our study. Several results are established. First, we describe typical modes of failure present in the physical design of quantum circuits. From this we develop fault models for quantum binary circuits that enable testing at the logical level. The application of these fault models is shown by adapting the classical test set generation technique known as constructing a fault table to generate quantum test sets. A test set developed using this method is shown to detect each of the considered faults.
45 - Z. Haiman , S. Allen , N. Bahcall 2005
The amount and nature of dark energy (DE) can be tightly constrained by measuring the spatial correlation features and evolution of a sample of ~ 100,000 galaxy clusters over the redshift range 0<z < 1.5. Such an X-ray survey will discover all collap sed structures with mass above 3.5e14 solar masss at redshifts z<2 (i.e. the full range where such objects are expected) in the high Galactic latitude sky. Above this mass threshold the tight correlations between X-ray observables and mass allow direct interpretation of the data. We describe the constraints on Dark Energy that can be inferred from such a survey, using powerful self-calibration techniques to relate the X-ray observables (luminosity and temperature) to the underlying mass.
104 - S. Allen , A.-M.S. Tremblay , 2001
The conserving approximation scheme to many-body problems was developed by Kadanoff and Baym using the functional-derivative approach. Another approach for the Hubbard model also satisfies conservation laws, but in addition it satisfies the Pauli pri nciple and a number of sum rules. A concise formal derivation of that approach, using functional derivatives, is given in this conference paper to highlight formal analogies and differences with conserving approximations.
The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both sin gle-particle and two-particle quantities. Both the density of states and the single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature T*, also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical pairing fluctuations in the low-temperature renormalized classical regime $omega < T$ of the two-dimensional system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it and the pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes around T* can modify the spectral weight over frequency scales much larger than temperature. Several qualitative results for the s-wave case should remain true for d-wave superconductors.
170 - S. Allen , , A.-M.S. Tremblay 2000
A non-perturbative approach to the single-band attractive Hubbard model is presented in the general context of functional derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-fiel d type ansatz, on enforcement of the Pauli principle and a number of crucial sum-rules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle self-consistency has been achieved. In the second step of the approximation, an improved expression for the self-energy is obtained by using the results of the first step in an exact expression for the self-energy where the high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical consequences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accompanying paper (following this one).
78 - S. Moukouri , S. Allen , F. Lemay 1999
The opening of a critical-fluctuation induced pseudogap (or precursor pseudogap) in the one-particle spectral weight of the half-filled two-dimensional Hubbard model is discussed. This pseudogap, appearing in our Monte Carlo simulations, may be obtai ned from many-body techniques that use Green functions and vertex corrections that are at the same level of approximation. Self-consistent theories of the Eliashberg type (such as the Fluctuation Exchange Approximation) use renormalized Green functions and bare vertices in a context where there is no Migdal theorem. They do not find the pseudogap, in quantitative and qualitative disagreement with simulations, suggesting these methods are inadequate for this problem. Differences between precursor pseudogaps and strong-coupling pseudogaps are also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا