ترغب بنشر مسار تعليمي؟ اضغط هنا

We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of $z=0.07$ implies an absolute magnitude in the rest-frame $I$-b and of M$_{I}sim-17.6$ mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths $<5000$ AA. To date, this is the only reported SN showing Ti-dominated spectra. The data are broadly consistent with existing models for the pure detonation of a helium shell around a low-mass CO white dwarf and double-detonation models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.
In a companion paper, Seitenzahl et al. (2013) presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar mass white dwarfs (WDs). Here, we present multi-dimensional radiative transfer simulation s that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (controlled by the ignition configuration) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width-luminosity relation (WLR) of SNe Ia: all our models show similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.
162 - E. R. Parkin , S. A. Sim 2013
In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shock s on the radiative driving of the stellar winds using steady state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, LX remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind-driving, we term this scenario as self regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppresses the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveals reasonable agreement in terms of log(LX/Lbol). The inclusion of self regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).
We present 65 optical spectra of the Type Ia supernova SN 2012fr, of which 33 were obtained before maximum light. At early times SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II 6355 line which can be cleanly decoupled fro m the lower velocity photospheric component. This Si II 6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of v~12,000 km/s until at least 5 weeks after maximum brightness. The Ca II infrared (IR) triplet exhibits similar evidence for both a photospheric component at v~12,000 km/s with narrow line width and long velocity plateau, as well as a high-velocity component beginning at v~31,000 km/s two weeks before maximum. SN 2012fr resides on the border between the shallow silicon and core-normal subclasses in the Branch et al. (2009) classification scheme, and on the border between normal and high-velocity SNe Ia in the Wang et al. (2009a) system. Though it is a clear member of the low velocity gradient (LVG; Benetii et al., 2005) group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution, and a key transitional event between nominal spectroscopic subclasses of SNe Ia.
67 - S. A. Sim 2010
We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disk wind somewhat more challenging and should be considered in future wind simulations.
The theory of radiative transfer provides the link between the physical conditions in an astrophysical object and the observable radiation which it emits. Thus accurately modelling radiative transfer is often a necessary part of testing theoretical m odels by comparison with observations. We describe a new radiative transfer code which employs Monte Carlo methods for the numerical simulation of radiation transport in expanding media. We discuss the application of this code to the calculation of synthetic spectra and light curves for a Type Ia supernova explosion model and describe the sensitivity of the results to certain approximations made in the simulations.
38 - M. Kromer 2009
A Monte Carlo code (ARTIS) for modelling time-dependent three-dimensional spectral synthesis in chemically inhomogeneous models of Type Ia supernova ejecta is presented. Following the propagation of gamma-ray photons, emitted by the radioactive decay of the nucleosynthesis products, energy is deposited in the supernova ejecta and the radiative transfer problem is solved self-consistently, enforcing the constraint of energy conservation in the co-moving frame. Assuming a photoionisation dominated plasma, the equations of ionisation equilibrium are solved together with the thermal balance equation adopting an approximate treatment of excitation. Since we implement a fully general treatment of line formation, there are no free parameters to adjust. Thus a direct comparison between synthetic spectra and light curves, calculated from hydrodynamic explosion models, and observations is feasible. The code is applied to the well known W7 explosion model and the results tested against other studies. Finally the effect of asymmetric ejecta on broad band light curves and spectra is illustrated using an elliptical toy model.
37 - M. Kromer 2009
Despite the importance of Type Ia supernovae as standard candles for cosmology and to the chemical evolution of the Universe, we still have no consistent picture of the nature of these events. Much progress has been made in the hydrodynamical explosi on modelling of supernovae Ia in the last few years and fully 3-D explosion models are now available. However those simulations are not directly comparable to observations: to constrain explosion models, radiative transfer calculations must be carried out. We present a new 3-D Monte Carlo radiative transfer code which allows forward modelling of the spectral evolution of Type Ia supernovae from first principles, using hydrodynamical explosion models as input. Here, as a first application, we calculate line-of-sight dependent colour light curves for a toy model of an off-centre explosion.
88 - S. A. Sim 2008
We use a multi-dimensional Monte Carlo code to compute X-ray spectra for a variety of active galactic nucleus (AGN) disk-wind outflow geometries. We focus on the formation of blue-shifted absorption features in the Fe K band and show that line featur es similar to those which have been reported in observations are often produced for lines-of-sight through disk-wind geometries. We also discuss the formation of other spectral features in highly ionized outflows. In particular we show that, for sufficiently high wind densities, moderately strong Fe K emission lines can form and that electron scattering in the flow may cause these lines to develop extended red wings. We illustrate the potential relevance of such models to the interpretation of real X-ray data by comparison with observations of a well-known AGN, Mrk 766.
A multi-dimension, time-dependent Monte Carlo code is used to compute sample gamma-ray spectra to explore whether unambiguous constraints could be obtained from gamma-ray observations of Type Ia supernovae. Both spherical and aspherical geometries ar e considered and it is shown that moderate departures from sphericity can produce viewing-angle effects that are at least as significant as those caused by the variation of key parameters in one-dimensional models. Thus gamma-ray data could in principle carry some geometrical information, and caution should be applied when discussing the value of gamma-ray data based only on one-dimensional explosion models. In light of the limited sensitivity of current gamma-ray observatories, the computed theoretical spectra are studied to revisit the issue of whether useful constraints could be obtained for moderately nearby objects. The most useful gamma-ray measurements are likely to be of the light curve and time-dependent hardness ratios, but sensitivity higher than currently available, particularly at relatively hard energies (~2-3 MeV), is desirable.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا