ترغب بنشر مسار تعليمي؟ اضغط هنا

We report magneto-transport studies of topological insulator Bi_{2}Te_{3} thin films grown by pulsed laser deposition. A non-saturating linear-like magneto-resistance (MR) is observed at low temperatures in the magnetic field range from a few Tesla u p to 60 Tesla. We demonstrate that the strong linear-like MR at high field can be well understood as the weak antilocalization phenomena described by Hikami-Larkin-Nagaoka theory. Our analysis suggests that in our system, a topological insulator, the elastic scattering time can be longer than the spin-orbit scattering time. We briefly discuss our results in the context of Dirac Fermion physics and quantum linear magnetoresistance.
It is shown that dilute niobium doping has significant effect on the ferromagnetism and microstructure of dilutely cobalt-doped anatase TiO2 films. Epitaxial films of anatase TiO2 with 3% Co, without and with 1% niobium doping were grown by pulsed-la ser deposition at 875 C at different oxygen pressures. For growth at 10^{-5} Torr niobium doping suppresses the ferromagnetism, while it enhances the same in films grown at 10^{-4} Torr. High-resolution Z-contrast Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy show uniform surface segregation of cobalt-rich Ti_{1-x-y}Co_{x}Nb_{y}O_{2-d} phase, but without cobalt metal clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا