ترغب بنشر مسار تعليمي؟ اضغط هنا

Heliospheric plasmas require multi-scale and multi-physics considerations. On one hand, MHD codes are widely used for global simulations of the solar-terrestrial environments, but do not provide the most elaborate physical description of space plasma s. Hybrid codes, on the other hand, capture important physical processes, such as electric currents and effects of finite Larmor radius, but they can be used locally only, since the limitations in available computational resources do not allow for their use throughout a global computational domain. In the present work, we present a new coupled scheme which allows to switch blocks in the block-adaptive grids from fluid MHD to hybrid simulations, without modifying the self-consistent computation of the electromagnetic fields acting on fluids (in MHD simulation) or charged ion macroparticles (in hybrid simulation). In this way, the hybrid scheme can refine the description in specified regions of interest without compromising the efficiency of the global MHD code.
We present numerical simulations in 3D settings where coronal rain phenomena take place in a magnetic configuration of a quadrupolar arcade system. Our simulation is a magnetohydrodynamic simulation including anisotropic thermal conduction, optically thin radiative losses, and parametrised heating as main thermodynamical features to construct a realistic arcade configuration from chromospheric to coronal heights. The plasma evaporation from chromospheric and transition region heights eventually causes localised runaway condensation events and we witness the formation of plasma blobs due to thermal instability, that evolve dynamically in the heated arcade part and move gradually downwards due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case there is no large scale prominence formation observed, but a continuous coronal rain develops which shows clear indications of Rayleigh-Taylor or interchange instability, that causes the denser plasma located above the transition region to fall down, as the system moves towards a more stable state. Linear stability analysis is used in the non-linear regime for gaining insight and giving a prediction of the systems evolution. After the plasma blobs descend through interchange, they follow the magnetic field topology more closely in the lower coronal regions, where they are guided by the magnetic dips.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا