ترغب بنشر مسار تعليمي؟ اضغط هنا

The realization of magnetic frustration in a metallic van der Waals (vdW) coupled material has been sought as a promising platform to explore novel phenomena both in bulk matter and in exfoliated devices. However, a suitable material platform has bee n lacking so far. Here, we demonstrate that CeSiI hosts itinerant electrons coexisting with exotic magnetism. In CeSiI, the magnetic cerium atoms form a triangular bilayer structure sandwiched by van der Waals stacked iodine layers. From resistivity and magnetometry measurements, we confirm the coexistence of itinerant electrons with magnetism with dominant antiferromagnetic exchange between the strongly Ising-like Ce moments below 7 K. Neutron diffraction directly confirms magnetic order with an incommensurate propagation vector k ~ (0.28, 0, 0.19) at 1.6 K, which points to the importance of further neighbor magnetic interactions in this system. The presence of a two-step magnetic-field-induced phase transition along c axis further suggests magnetic frustration in the ground state. Our findings provide a novel material platform hosting a coexistence of itinerant electron and frustrated magnetism in a vdW system, where exotic phenomena arising from rich interplay between spin, charge and lattice in low dimension can be explored.
Dimensionality is a critical factor in determining the properties of solids and is an apparent built-in character of the crystal structure. However, it can be an emergent and tunable property in geometrically frustrated spin systems. Here, we study t he spin dynamics of the tetrahedral cluster antiferromagnet, pharmacosiderite, via muon spin resonance and neutron scattering. We find that the spin correlation exhibits a two-dimensional characteristic despite the isotropic connectivity of tetrahedral clusters made of spin 5/2 Fe3+ ions in the three-dimensional cubic crystal, which we ascribe to two-dimensionalisation by geometrical frustration based on spin wave calculations. Moreover, we suggest that even one-dimensionalisation occurs in the decoupled layers, generating low-energy and one-dimensional excitation modes, causing large spin fluctuation in the classical spin system. Pharmacosiderite facilitates studying the emergence of low-dimensionality and manipulating anisotropic responses arising from the dimensionality using an external magnetic field.
To capture the high-field magnetization process of herbertsmithite (ZnCu3(OH)6Cl2), Faraday rotation (FR) measurements were carried out on a single crystal in magnetic fields of up to 190 T. The magnetization data evaluated from the FR angle exhibite d a saturation behavior above 150 T at low temperatures, which was attributed to the 1/3 magnetization plateau. The overall behavior of the magnetization process was reproduced by theoretical models based on the nearest-neighbor Heisenberg model. This suggests that herbertsmithite is a proximate kagome antiferromagnet hosting an ideal quantum spin liquid in the ground state. A distinguishing feature is the superlinear magnetization increase, which is in contrast to the Brillouin function-type increase observed by conventional magnetization measurements and indicates a reduced contribution from free spins located at the Zn sites to the FR signal.
We show that pharmacosiderite is a novel cluster antiferromagnet comprising frustrated regular tetrahedra made of spin-5/2 Fe3+ ions that are arranged in the primitive cubic lattice. The connectivity of the tetrahedra and the inter-cluster interactio n of 2.9 K, which is significantly large compared with the intra-cluster interaction of 10.6 K, gives a unique playground for frustration physics. An unconventional antiferromagnetic order is observed below TN ~ 6 K, which is accompanied by a weak ferromagnetic moment and a large fluctuation as evidenced by Mossbauer spectroscopy. A q = 0 magnetic order with the total S = 0 for the tetrahedral cluster is proposed based on the irreducible representation analysis, which may explain the origin of the weak ferromagnetism and fluctuation.
Novel magnetic phases are expected to occur in highly frustrated spin systems. Here we study the structurally perfect kagome antiferromagnet CdCu$_3$(OH)$_6$(NO$_3$)$_2cdot$H$_2$O by magnetization, magnetic torque, and heat capacity measurements usin g single crystals.An antiferromagnetic order accompanied by a small spontaneous magnetization that surprisingly is confined in the kagome plane sets in at $T_mathrm{N}approx$4 K, well below the nearest-neighbor exchange interaction $J / k_B$ = 45 K.This suggests that a unique $bf q = 0$ type 120$^circ$ spin structure with negative (downward) vector chirality, which breaks the underlying threefold rotational symmetry of the kagome lattice and thus allows a spin canting within the plane, is exceptionally realized in this compound rather than a common one with positive (upward) vector chirality. The origin is discussed in terms of the Dzyaloshinskii-Moriya interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا