ترغب بنشر مسار تعليمي؟ اضغط هنا

The temperature dependence of the topological susceptibility in QCD, chi_t, essentially determines the abundance of the QCD axion in the Universe, and is commonly estimated, based on the instanton picture, to be a certain negative power of temperatur e. While lattice QCD should be able to check this behavior in principle, the temperature range where lattice QCD works is rather limited in practice, because the topological charge is apt to freezes at high temperatures. In this work, two exploratory studies are presented. In the first part, we try to specify the temperature range in the quenched approximation. Since our purpose here is to estimate the range expected in unquenched QCD through quenched simulations, hybrid Monte Carlo (HMC) algorithm is employed instead of heatbath algorithm. We obtain an indication that unquenched calculations of chi_t encounter the serious problem of autocorrelation already at T~2Tc or even below with the plain HMC. In the second part, we revisit the axion abundance. The absolute value and the temperature dependence of chi_t in real QCD can be significantly different from that in the quenched approximation, and is not well established above the critical temperature. Motivated by this fact and precedent arguments which disagree with the conventional instanton picture, we estimate the axion abundance in an extreme case where chi_t decreases much faster than the conventional power-like behavior. We find a significant enhancement of the axion abundance in such a case.
The color-flavor locking phenomenon in the magnetic picture can be the microscopic description of the quark confinement in QCD. We demonstrate it in an N=2 supersymmetric SU(Nc)xSU(Nc) quiver gauge theory coupled to Nf flavors of quarks (Nf<Nc). This model reduces to SU(Nc) gauge theory with Nf flavors when the vacuum expectations value of the link field is much larger than the dynamical scales, and thus provides a continuous deformation of the N=2 supersymmetric QCD. We study a vacuum which survives upon adding a superpotential term to reduce to N=1 while preserving the vectorial SU(Nf) flavor symmetry. We find a region of the parameter space where the confinement is described by the Higgsing of a weakly coupled magnetic SU(Nf)xU(1) gauge theory. The Higgsing locks the quantum numbers of SU(Nf) magnetic color to those of SU(Nf) flavor symmetry, and thus the massive magnetic gauge bosons become the singlet and adjoint representations of the flavor group, i.e, the vector mesons. If the qualitative picture remains valid in non-supersymmetric QCD, one can understand the Hidden Local Symmetry as the magnetic dual description of QCD, and the confining string is identified as the vortex of vector meson fields.
40 - Ryuichiro Kitano 2013
In light of the discovery of the new particle at 125GeV and the strong lower limits on the masses of superparticles from LHC, we discuss a possible picture of weak scale supersymmetry.
The Higgs mechanism well describes the electroweak symmetry breaking in nature. We consider a possibility that the microscopic origin of the Higgs field is UV physics of QCD. We construct a UV complete model of a higher dimensional Yang-Mills theory as a deformation of a deconstructed (2,0) theory in six dimensions, and couple the top and bottom (s)quarks to it. We see that the Higgs fields appear as magnetic degrees of freedom. The model can naturally explain the masses of the Higgs boson and the top quark. The rho meson-like resonances with masses such as 1 TeV are predicted.
115 - Ryuichiro Kitano 2012
We try to identify the light hadron world as the magnetic picture of QCD. We take both phenomenological and theoretical approaches to this hypothesis, and find that the interpretation seems to show interesting consistencies. In particular, one can id entify the rho and omega mesons as the magnetic gauge bosons, and the Higgs mechanism for them provides a dual picture of the color confinement.
The light mesons such as pi, rho, omega, f0, and a0 are possible candidates of magnetic degrees of freedom, if a magnetic dual picture of QCD exists. We construct a linear sigma model to describe spontaneous breaking of the magnetic gauge group, in w hich there is a stable vortex configuration of vector and scalar mesons. We numerically examine whether such a string can be interpreted as the confining string. By using meson masses and couplings as inputs, we calculate the tension of the string as well as the strength of the Coulomb force between static quarks. They are found to be consistent with those inferred from the quarkonium spectrum and the Regge trajectories of hadrons. By using the same Lagrangian, the critical temperature of the QCD phase transition is estimated, and a non-trivial flavor dependence is predicted. We also discuss a possible connection between the Seiberg duality and the magnetic model we studied.
303 - Ryuichiro Kitano 2011
The hidden local symmetry is a successful model to describe the properties of the vector mesons in QCD. We point out that if we identify this hidden gauge theory as the magnetic picture of QCD, a linearized version of the model simultaneously describ es color confinement and chiral symmetry breaking. We demonstrate that such a structure can be seen in the Seiberg dual picture of a softly broken supersymmetric QCD. The model possesses exact chiral symmetry and reduces to QCD when mass parameters are taken to be large. Working in the regime of the small mass parameters, we show that there is a vacuum where chiral symmetry is spontaneously broken and simultaneously the magnetic gauge group is Higgsed. If the vacuum we find persists in the limit of large mass parameters, one can identify the rho meson as the massive magnetic gauge boson, that is an essential ingredient for color confinement.
We study effective theories of an axion in spontaneously broken supersymmetric theories. We consider a system where the axion supermultiplet is directly coupled to a supersymmetry breaking sector whereas the standard model sector is communicated with those sectors through loops of messenger fields. The gaugino masses and the axion-gluon coupling necessary for solving the strong CP problem are both obtained by the same effective interaction. We discuss cosmological constraints on this framework.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا