ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to explore why the multi-layered cuprates have such high Tcs, we have examined various inter-layer processes. Since the inter-layer one-electron hopping has little effects on the band structure, we turn to the inter-layer pair hopping. The s uperconductivity in a double-layer Hubbard model with and without the inter-layer pair hopping, as studied by solving the Eliashberg equation with the fluctuation exchange approximation, reveals that the inter-layer pair hopping acts to increase the pairing interaction and the self-energy simultaneously, but that the former effect supersedes the latter and enhances the superconductivity. The inter-layer pair hopping considered here is for off-site pairs, for which we discuss the effect of retaining SU(2) symmetry, along with how the the sign of the pair hopping determines the relative configuration of d-waves between the adjacent layers.
We present an implementaion of interface between the full-potential linearized augmented plane wave package Wien2k and the wannier90 code for the construction of maximally localized Wannier functions. The FORTRAN code and a documentation is made avai lable and results are discussed for SrVO$_3$, Sr$_2$IrO$_4$ (including spin-orbit coupling), LaFeAsO, and FeSb$_2$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا