ترغب بنشر مسار تعليمي؟ اضغط هنا

62 - Ryan Cooke 2013
We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = -2.88) damped Lyman-alpha system at z_abs = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lym an alpha transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias), and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H)_p = (2.53 +/- 0.04) x 10^-5, corresponding to a Universal baryon density100 Omega_b h^2 = 2.202 +/- 0.046 for the standard model of Big Bang Nucleosynthesis. By combining our measure of (D/H)_p with observations of the cosmic microwave background, we derive the effective number of light fermion species, N_eff = 3.28 +/- 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e. N_eff = 4.046) at 99.3 percent confidence (2.7 sigma), provided that N_eff and the baryon-to-photon ratio (eta_10) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, xi_D = +0.05 +/- 0.13 based only on the CMB+(D/H)_p observations. Combining xi_D with the current best literature measure of Y_p, we find |xi| <= +0.062. In future, improved measurements of several key reaction rates, in particular d(p,gamma)3He, and further measures of (D/H)_p with a precision comparable to those considered here, should allow even more stringent limits to be placed on new physics beyond the standard model.
42 - Ryan Cooke 2012
The relative abundances of the Fe-peak elements (Ti-Zn) at the lowest metallicities are intimately linked to the physics of core-collapse supernova explosions. With a sample of 25 very metal-poor damped Lyman-alpha systems, we investigate the trends of the Fe-peak element ratios with metallicity. For nine of the 25 DLAs, a direct measurement (or useful upper limit) of one or more of the Ti,Cr,Co,Ni,Zn/Fe abundance ratios could be determined from detected absorption lines. For the remaining systems (without detections), we devised a new form of spectral stacking to estimate the typical Fe-peak element ratios of the DLA population in this metallicity regime. We compare these data to analogous measurements in metal-poor stars of the Galactic halo and to detailed calculations of explosive nucleosynthesis in metal-free stars. We conclude that most of the DLAs in our sample were enriched by stars that released an energy of < 1.2 x 10^51 erg when they exploded as core-collapse supernovae. Finally, we discuss the exciting prospect of measuring Fe-peak element ratios in damped Lyman-alpha systems with Fe/H < 1/1000 of solar when 30-m class telescopes become available. Only then will we be able to pin down the energy that was released by the supernovae of the first stars.
The metal-poor damped Lyman alpha (DLA) system at z = 3.04984 in the QSO SDSSJ1419+0829 has near-ideal properties for an accurate determination of the primordial abundance of deuterium, (D/H)_p. We have analysed a high-quality spectrum of this object with software specifically designed to deduce the best fitting value of D/H and to assess comprehensively the random and systematic errors affecting this determination. We find (D/H)_DLA = (2.535 +/-0.05) x 10^(-5), which in turn implies Omega_b h^2 = 0.0223 +/- 0.0009, in very good agreement with Omega_b h^2 (CMB) = 0.0222 +/- 0.0004 deduced from the angular power spectrum of the cosmic microwave background. If the value in this DLA is indeed the true (D/H)_p produced by Big-Bang nucleosynthesis (BBN), there may be no need to invoke non-standard physics nor early astration of D to bring together Omega_b h^2 (BBN) and Omega_b h^2 (CMB). The scatter between most of the reported values of (D/H)_p in the literature may be due largely to unaccounted systematic errors and biases. Further progress in this area will require a homogeneous set of data comparable to those reported here and analysed in a self-consistent manner. Such an endeavour, while observationally demanding, has the potential of improving our understanding of BBN physics, including the relevant nuclear reactions, and the subsequent processing of 4He and 7Li through stars.
We report the identification of a very metal-poor damped Lyman-alpha system (DLA) at z_abs = 3.067295 that is modestly carbon-enhanced, with an iron abundance of ~1/700 solar ([Fe/H] = -2.84) and [C,O/Fe] ~ +0.6. Such an abundance pattern is likely t o be the result of nucleosynthesis by massive stars. On the basis of 17 metal absorption lines, we derive a 2 sigma upper limit on the DLAs kinetic temperature of T_DLA <= 4700 K, which is broadly consistent with the range of spin temperature estimates for DLAs at this redshift and metallicity. While the best-fitting abundance pattern shows the expected hallmarks of Population III nucleosynthesis, models of high-mass Population II stars can match the abundance pattern almost as well. We discuss current limitations in distinguishing between these two scenarios and the marked improvement in identifying the remnants of Population III stars expected from the forthcoming generation of 30-metre class telescopes.
We present high resolution observations of an extremely metal-poor damped Lyman-alpha system, at z_abs = 2.3400972 in the spectrum of the QSO J0035-0918, exhibiting an abundance pattern consistent with model predictions for the supernova yields of Po pulation III stars. Specifically, this DLA has [Fe/H] = -3.04, shows a clear `odd-even effect, and is C-rich with [C/Fe] = +1.53, a factor of about 20 greater than reported in any other damped Lyman-alpha system. In analogy to the carbon-enhanced metal-poor stars in the Galactic halo (with [C/Fe] > +1.0), this is the first reported case of a carbon-enhanced damped Lyman-alpha system. We determine an upper limit to the mass of 12C, M(12C) < 200 solar masses, which depends on the unknown gas density n(H); if n(H) > 1 atom per cubic cm (which is quite likely for this DLA given its low velocity dispersion), then M(12C) < 2 solar masses, consistent with pollution by only a few prior supernovae. We speculate that DLAs such as the one reported here may represent the `missing link between the yields of Pop III stars and their later incorporation in the class of carbon-enhanced metal-poor stars which show no enhancement of neutron-capture elements (CEMP-no stars).
118 - Ryan Cooke 2010
The sightline to the brighter member of the gravitationally lensed quasar pair UM 673A,B intersects a damped Lyman-alpha system (DLA) at z = 1.62650 which, because of its low redshift, has not been recognised before. Our high quality echelle spectra of the pair, obtained with HIRES on the Keck I telescope, show a drop in neutral hydrogen column density N(H I) by a factor of at least 400 between UM 673A and B, indicating that the DLAs extent in this direction is much less than the 2.7 kpc separation between the two sightlines at z = 1.62650. By reassessing this new case together with published data on other quasar pairs, we conclude that the typical size (radius) of DLAs at these redshifts is R ~ (5 +/- 3) kpc, smaller than previously realised. Highly ionized gas associated with the DLA is more extended, as we find only small differences in the C IV absorption profiles between the two sightlines. Coincident with UM 673B, we detect a weak and narrow Ly-alpha emission line which we attribute to star formation activity at a rate SFR >~ 0.2 M_solar/yr. The DLA in UM 673A is metal-poor, with an overall metallicity Z_DLA ~ 1/30 Z_solar, and has a very low internal velocity dispersion. It exhibits some apparent peculiarities in its detailed chemical composition, with the elements Ti, Ni, and Zn being deficient relative to Fe by factors of 2-3. The [Zn/Fe] ratio is lower than those measured in any other DLA or Galactic halo star, presumably reflecting somewhat unusual previous enrichment by stellar nucleosynthesis. We discuss the implications of these results for the nature of the galaxy hosting the DLA.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا