ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the three-state toric homogeneous Markov chain model (THMC) without loops and initial parameters. At time $T$, the size of the design matrix is $6 times 3cdot 2^{T-1}$ and the convex hull of its columns is the model polytope. We study the behavior of this polytope for $Tgeq 3$ and we show that it is defined by 24 facets for all $Tge 5$. Moreover, we give a complete description of these facets. From this, we deduce that the toric ideal associated with the design matrix is generated by binomials of degree at most 6. Our proof is based on a result due to Sturmfels, who gave a bound on the degree of the generators of a toric ideal, provided the normality of the corresponding toric variety. In our setting, we established the normality of the toric variety associated to the THMC model by studying the geometric properties of the model polytope.
In this paper we consider exact tests of a multiple logistic regression, where the levels of covariates are equally spaced, via Markov beses. In usual application of multiple logistic regression, the sample size is positive for each combination of le vels of the covariates. In this case we do not need a whole Markov basis, which guarantees connectivity of all fibers. We first give an explicit Markov basis for multiple Poisson regression. By the Lawrence lifting of this basis, in the case of bivariate logistic regression, we show a simple subset of the Markov basis which connects all fibers with a positive sample size for each combination of levels of covariates.
In two-way contingency tables we sometimes find that frequencies along the diagonal cells are relatively larger(or smaller) compared to off-diagonal cells, particularly in square tables with the common categories for the rows and the columns. In this case the quasi-independence model with an additional parameter for each of the diagonal cells is usually fitted to the data. A simpler model than the quasi-independence model is to assume a common additional parameter for all the diagonal cells. We consider testing the goodness of fit of the common diagonal effect by Markov chain Monte Carlo (MCMC) method. We derive an explicit form of a Markov basis for performing the conditional test of the common diagonal effect. Once a Markov basis is given, MCMC procedure can be easily implemented by techniques of algebraic statistics. We illustrate the procedure with some real data sets.
It has been well-known that for two-way contingency tables with fixed row sums and column sums the set of square-free moves of degree two forms a Markov basis. However when we impose an additional constraint that the sum of a subtable is also fixed, then these moves do not necessarily form a Markov basis. Thus, in this paper, we show a necessary and sufficient condition on a subtable so that the set of square-free moves of degree two forms a Markov basis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا