ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray observations of kilo-parsec scale jets indicate that a synchrotron origin of the sustained non-thermal emission is likely. This requires distributed acceleration of electrons up to near PeV energies along the jet. The underlying acceleration me chanism is still unclear. Shear acceleration is a promising candidate, as velocity-shear stratification is a natural consequence of the collimated flow of a jet. We study the details of shear acceleration by solving the steady-state Fokker-Planck-type equation and provide a simple general solution for trans-relativistic jets for a range of magnetohydrodynamic turbulent power-law spectra. In general, the accelerated particle population is a power-law spectrum with an exponential-like cut-off, where the power-law index is determined by the turbulence spectrum and the balance of escape and acceleration of particles. Adopting a simple linearly decreasing velocity profile in the boundary of large-scale jets, we find that the multi-wavelength spectral energy distribution of X-ray jets, such as Centaurus A and 3C 273, can be reproduced with electrons that are accelerated up to $sim$ PeV. In kpc-scale jets, protons may be accelerated up to $sim$ EeV, supporting the hypothesis that large-scale jets are strong candidates for ultra-high-energy-cosmic-ray sources within the framework of shear acceleration.
174 - Ruo-Yu Liu , Xiang-Yu Wang 2021
Very recently, diffuse gamma rays with $0.1,{rm PeV}<E_gamma <1,rm PeV$ have been discovered from the Galactic disk by the Tibet air shower array and muon detector array (Tibet AS+MD array). While the measured sub-PeV flux may be compatible with the hadronic origin in the conventional Galactic cosmic ray propagation model, we find that it is in possible tension with the non-detection of Galactic neutrino emissions by the IceCube neutrino telescope. We further find that the presence of an extra cosmic ray component of relatively hard spectrum, which is probably related to the Cygnus Cocoon region and other PeV cosmic-ray sources in the Galactic disk, would alleviate the tension. This scenario implies the existence of an extreme accelerator of either protons or electrons beyond PeV in the Cygnus region, and predicts the continuation of the gamma-ray spectrum of Cygnus Cocoon up to 1 PeV with a possible hardening beyond $sim 30-100,$TeV.
The unidentified TeV source MGRO J1908+06, with emission extending from hundreds of GeV to beyond 100TeV, is one of the most intriguing sources in the Galactic plane. MGRO J1908+06 spatially associates with an IceCube hotspot of neutrino emission. Al though the hotspot is not significant yet, this suggests a possible hadronic origin of the observed gamma-ray radiation. Here we describe a multiwavelength analysis on MGRO J1908+06 to determine its nature. We identify, for the first time, an extended GeV source as the counterpart of MGRO J1908+06, discovering possibly associated molecular clouds (MCs). The GeV spectrum shows two well-differentiated components: a soft spectral component below $sim10$ GeV, and a hard one ($Gammasim1.6$) above these energies. The lower-energy part is likely associated with the dense MCs surrounding the supernova remnant SNR G40.5$-$0.5, whereas the higher-energy component, which connects smoothly with the spectrum observed in TeV range, resembles the inverse Compton emission observed in relic pulsar wind nebulae. This simple scenario seems to describe the data satisfactorily, but raises questions about the interpretation of the emission at hundreds of TeV. In this scenario, no detectable neutrino flux would be expected.
346 - Xiao-Li Huang 2020
Recent detection of sub-TeV emission from gamma-ray bursts (GRBs) represents a breakthrough in the GRB study. The multi-wavelength data of the afterglows of GRB 190114C support the synchrotron self-Compton (SSC) origin for its sub-TeV emission. We pr esent a comparative analysis on the SSC emission of GRB afterglows in the homogeneous and wind environment in the framework of the forward shock model. The $gammagamma$ absorption of very high-energy photons due to pair production within the source and the Klein-Nishina effect on the inverse-Compton scattering are considered. Generally a higher SSC flux is expected for a larger circum-burst density due to a larger Compton parameter, but meanwhile the internal $gammagamma$ absorption is more severer for sub-TeV emission. The flux ratio between the SSC component and the synchrotron component decreases more quickly with time in the wind medium case than that in the homogenous-density medium case. The light curves of the SSC emission are also different for the two types of media. We also calculate the cascade emission resulted from the absorbed high-energy photons. In the ISM environment with $n> 1,rm cm^{-3}$, the cascade synchrotron emission could be comparable to the synchrotron emission of the primary electrons in the optical band, which may flatten the optical afterglow light curve at early time ($t<1$ h). In the wind medium with $A_{ast}> 0.1$, the cascade emission in the eV-GeV band is comparable or even larger than the emission of the primary electrons at early time.
124 - Chong Ge , Ruo-Yu Liu , Shu Niu 2020
Supernova remnants (SNRs) have long been considered as one of the most promising sources of Galactic cosmic rays. In the SNR paradigm, petaelectronvolt (PeV) proton acceleration may only be feasible at the early evolution stage, lasting a few hundred years, when the SNR shock speed is high. While evidence supporting the acceleration of PeV protons in young SNRs has yet to be discovered, X-ray synchrotron emission is an important indicator of fast shock. We here report the first discovery of X-ray synchrotron emission from the possibly middle-aged SNR G106.3+2.7, implying that this SNR is still an energetic particle accelerator despite its age. This discovery, along with the ambient environmental information, multiwavelength observation, and theoretical arguments, supports SNR G106.3+2.7 as a likely powerful PeV proton accelerator.
Recently, a high-energy muon neutrino event was detected in association with a tidal disruption event (TDE) AT2019dsg at the time about 150 days after the peak of the optical/UV luminosity. We propose that such a association could be interpreted as a rising from hadronic interactions between relativistic protons accelerated in the jet launched from the TDE and the intense radiation field of TDE inside the optical/UV photosphere, if we are observing the jet at a moderate angle (i.e., approximately 10-30 degree) with respect to the jet axis. Such an off-axis viewing angle leads to a high gas column density in the line of sight which provides a high opacity for the photoionization and the Bethe-Heitler process, {and allows the existence of an intrinsic long-term X-ray radiation of comparatively high emissivity}. As a result, the cascade emission accompanying the neutrino production, which would otherwise overshoot the flux limits in X-ray and/or GeV band, is significantly obscured or absorbed. Since the jets of TDEs are supposed to be randomly oriented in the sky, the source density rate of TDE with an off-axis jet is significantly higher than that of TDE with an on-axis jet. Therefore, an off-axis jet is naturally expected in a nearby TDE being discovered, supporting the proposed scenario.
289 - Rui Xue , Ruo-Yu Liu , Ze-Rui Wang 2020
In this work, we investigate the 2014-2015 neutrino flare associated with the blazar TXS 0506+056 and a recently discovered muon neutrino event IceCube-200107A in spatial coincidence with the blazar 4FGL J0955.1+3551, under the framework of a two-zon e radiation model of blazars where an inner/outer blob close to/far from the supermassive black hole are invoked. An interesting feature that the two sources share in common is that no evidence of GeV gamma-ray activity is found during the neutrino detection period, probably implying a large opacity for GeV gamma rays in the neutrino production region. In our model, continuous particle acceleration/injection takes place in the inner blob at the jet base, where the hot X-ray corona of the supermassive black hole provides target photon fields for efficient neutrino production and strong GeV gamma-ray absorption. We show that this model can self-consistently interpret the neutrino emission from both two blazars in a large parameter space. In the meantime, the dissipation processes in outer blob are responsible for the simultaneous multi-wavelength emission of both sources. In agreement with previous studies of TXS 0506+056 and, an intense MeV emission from the induced electromagnetic cascade in the inner blob is robustly expected to accompany the neutrino flare in our model could be used to test the model with the next-generation MeV gamma-ray detector in the future.
101 - Yi Zhang , Ruo-Yu Liu , Hui Li 2020
One of the biggest mysteries in the modern cosmology and galaxy formation is the hideout of the missing baryons. The leading theory of galaxy formation predicts that a huge amount of baryons resides around galaxies extending out to their virial radii in the form of diffuse and hot gas of $10^6-10^7,$K, which is also known as the major component of the circumgalactic medium (CGM). Studies by various groups via different techniques, however, have not reached a consensus on the role of CGM in accounting for the missing baryons, with the estimated contribution ranging from a minor fraction to enclosing the baryon budget of the galaxy. In this work we attempt to measure the mass of missing baryons in CGM with a novel method based on the gamma-ray observations of the extended halo of the Andromeda Galaxy. Since cosmic-ray particles that are generated inside the galaxy will eventually escape to the CGM, they will produce gamma-ray emission via the proton-proton collision with CGM. Different from some traditional measurements which are sensitive only to gas in certain specific temperature range, the hadronic gamma-ray flux is sensitive to baryonic gases in all phases and does not rely on the metallicity in the halo. Our result suggests that the total baryon mass contained within the virial radius is less than $(1.4-5)times 10^{10}M_odot$ according to the gamma-ray intensity obtained with a model-dependent analysis. It implies that the CGM of Andromeda Galaxy may not account for more than $30%$ of the missing baryons, but the result is subject to uncertainties from the gamma-ray intensity upper limit, diffusion coefficient of the CRs in the halo as well as the stellar mass and dark matter halo mass of the galaxy. This method will become more constraining provided better understandings on these issues and more sensitive gamma-ray telescopes in the future.
Microquasars, the local siblings of extragalactic quasars, are binary systems comprising a compact object and a companion star. By accreting matter from their companions, microquasars launch powerful winds and jets, influencing the interstellar envir onment around them. Steady gamma-ray emission is expected to rise from their central objects, or from interactions between their outflows and the surrounding medium. The latter prediction was recently confirmed with the detection of SS 433 at high (TeV) energies. In this report, we analyze more than ten years of GeV gamma-ray data from the Fermi Gamma-ray Space Telescope on this source. Detailed scrutiny of the data reveal emission in the SS 433 vicinity, co-spatial with a gas enhancement, and hints for emission possibly associated with a terminal lobe of one of the jets. Both gamma-ray excesses are relatively far from the central binary, and the former shows evidence for a periodic variation at the precessional period of SS 433, linking it with the microquasar. This result challenges obvious interpretations and is unexpected from any previously published theoretical models. It provides us with a chance to unveil the particle transport from SS 433 and to probe the structure of the local magnetic field in its vicinity.
69 - Chong Ge , Ruo-Yu Liu , Ming Sun 2020
We present the results of deep Chandra and XMM-Newton observations of a complex merging galaxy cluster Abell 2256 (A2256) that hosts a spectacular radio relic (RR). The temperature and metallicity maps show clear evidence of a merger between the west ern subcluster (SC) and the primary cluster (PC). We detect five X-ray surface brightness edges. Three of them near the cluster center are cold fronts (CFs): CF1 is associated with the infalling SC; CF2 is located in the east of the PC; and CF3 is to the west of the PC core. The other two edges at cluster outskirts are shock fronts (SFs): SF1 near the RR in the NW has Mach numbers derived from the temperature and the density jumps, respectively, of $M_T=1.62pm0.12$ and $M_rho=1.23pm0.06$; SF2 in the SE has $M_T=1.54pm0.05$ and $M_rho=1.16pm0.13$. In the region of the RR, there is no evidence for the correlation between X-ray and radio substructures, from which we estimate an upper limit for the inverse-Compton emission, and therefore set a lower limit on the magnetic field ($sim$ 450 kpc from PC center) of $B>1.0 mu$G for a single power-law electron spectrum or $B>0.4 mu$G for a broken power-law electron spectrum. We propose a merger scenario including a PC, an SC, and a group. Our merger scenario accounts for the X-ray edges, diffuse radio features, and galaxy kinematics, as well as projection effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا