ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose first-order methods based on a level-set technique for convex constrained optimization that satisfies an error bound condition with unknown growth parameters. The proposed approach solves the original problem by solving a sequence of uncon strained subproblems defined with different level parameters. Different from the existing level-set methods where the subproblems are solved sequentially, our method applies a first-order method to solve each subproblem independently and simultaneously, which can be implemented with either a single or multiple processors. Once the objective value of one subproblem is reduced by a constant factor, a sequential restart is performed to update the level parameters and restart the first-order methods. When the problem is non-smooth, our method finds an $epsilon$-optimal and $epsilon$-feasible solution by computing at most $O(frac{G^{2/d}}{epsilon^{2-2/d}}ln^3(frac{1}{epsilon}))$ subgradients where $G>0$ and $dgeq 1$ are the growth rate and the exponent, respectively, in the error bound condition. When the problem is smooth, the complexity is improved to $O(frac{G^{1/d}}{epsilon^{1-1/d}}ln^3(frac{1}{epsilon}))$. Our methods do not require knowing $G$, $d$ and any problem dependent parameters.
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequ ence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $tilde O(varepsilon^{-5/2})$ to produce an $varepsilon$-stationary point under the Slaters condition. When the constraint functions are non-convex, the complexity becomes $tilde O(varepsilon^{-3})$ if a non-singularity condition holds on constraints and otherwise $tilde O(varepsilon^{-4})$ if a feasible initial solution is available.
Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoreti cal convergence guarantees for non-convex unconstrained problems, it remains a challenge to design provably efficient algorithms for problems with non-convex functional constraints. This paper proposes a class of subgradient methods for constrained optimization where the objective function and the constraint functions are are weakly convex. Our methods solve a sequence of strongly convex subproblems, where a proximal term is added to both the objective function and each constraint function. Each subproblem can be solved by various algorithms for strongly convex optimization. Under a uniform Slaters condition, we establish the computation complexities of our methods for finding a nearly stationary point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا