ترغب بنشر مسار تعليمي؟ اضغط هنا

The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fundamental properties and fashioning proof-of-concept devices. Here, we use molecular beam epitaxy to synthesize a vdW heterostructure that interfaces two material systems of contemporary interest: a 2D ferromagnet (1T-CrTe2) and a topological semimetal (ZrTe2). We find that one unit-cell (u.c.) thick 1T-CrTe2 grown epitaxially on ZrTe2 is a 2D ferromagnet with a clear anomalous Hall effect. In thicker samples (12 u.c. thick CrTe2), the anomalous Hall effect has characteristics that may arise from real-space Berry curvature. Finally, in ultrathin CrTe2 (3 u.c. thickness), we demonstrate current-driven magnetization switching in a full vdW topological semimetal/2D ferromagnet heterostructure device.
73 - Run Xiao , Di Xiao , Jue Jiang 2021
We use magnetotransport in dual-gated magnetic topological insulator heterostructures to map out a phase diagram of the topological Hall and quantum anomalous Hall effects as a function of the chemical potential (primarily determined by the back gate voltage) and the asymmetric potential (primarily determined by the top gate voltage). A theoretical model that includes both surface states and valence band quantum well states allows the evaluation of the variation of the Dzyaloshinskii-Moriya interaction and carrier density with gate voltages. The qualitative agreement between experiment and theory provides strong evidence for the existence of a topological Hall effect in the system studied, opening up a new route for understanding and manipulating chiral magnetic spin textures in real space.
We report spin-to-charge and charge-to-spin conversion at room temperature in heterostructure devices that interface an archetypal Dirac semimetal, Cd3As2, with a metallic ferromagnet, Ni0.80Fe0.20 (permalloy). The spin-charge interconversion is dete cted by both spin torque ferromagnetic resonance and ferromagnetic resonance driven spin pumping. Analysis of the symmetric and anti-symmetric components of the mixing voltage in spin torque ferromagnetic resonance and the frequency and power dependence of the spin pumping signal show that the behavior of these processes is consistent with previously reported spin-charge interconversion mechanisms in heavy metals, topological insulators, and Weyl semimetals. We find that the efficiency of spin-charge interconversion in Cd3As2/permalloy bilayers can be comparable to that in heavy metals. We discuss the underlying mechanisms by comparing our results with first principles calculations.
65 - Yanan Li , Ziqiao Wang , Run Xiao 2020
Understanding the superconductivity at the interface of FeSe/SrTiO3 is a problem of great contemporary interest due to the significant increase in critical temperature (Tc) compared to that of bulk FeSe, as well as the possibility of an unconventiona l pairing mechanism and topological superconductivity. We report a study of the influence of a capping layer on superconductivity in thin films of FeSe grown on SrTiO3 using molecular beam epitaxy. We used in vacuo four-probe electrical resistance measurements and ex situ magneto-transport measurements to examine the effect of three capping layers that provide distinctly different charge transfer into FeSe: compound FeTe, non-metallic Te, and metallic Zr. Our results show that FeTe provides an optimal cap that barely influences the inherent Tc found in pristine FeSe/SrTiO3, while the transfer of holes from a non-metallic Te cap completely suppresses superconductivity and leads to insulating behavior. Finally, we used ex situ magnetoresistance measurements in FeTe-capped FeSe films to extract the angular dependence of the in-plane upper critical magnetic field. Our observations reveal an almost isotropic in-plane upper critical field, providing insight into the symmetry and pairing mechanism of high temperature superconductivity in FeSe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا