ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs ha rdware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D$^2$NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables robust and noise-resilient Multi-task Learning in D$^2$NNs. Our experimental results demonstrate significant improvements in versatility and hardware efficiency, and also demonstrate the robustness of proposed multi-task D$^2$NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task.
Optical and optoelectronic approaches of performing matrix-vector multiplication (MVM) operations have shown the great promise of accelerating machine learning (ML) algorithms with unprecedented performance. The incorporation of nanomaterials into th e system can further improve the performance thanks to their extraordinary properties, but the non-uniformity and variation of nanostructures in the macroscopic scale pose severe limitations for large-scale hardware deployment. Here, we report a new optoelectronic architecture consisting of spatial light modulators and photodetector arrays made from graphene to perform MVM. The ultrahigh carrier mobility of graphene, nearly-zero-power-consumption electro-optic control, and extreme parallelism suggest ultrahigh data throughput and ultralow-power consumption. Moreover, we develop a methodology of performing accurate calculations with imperfect components, laying the foundation for scalable systems. Finally, we perform a few representative ML algorithms, including singular value decomposition, support vector machine, and deep neural networks, to show the versatility and generality of our platform.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا