ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision time transfer is of fundamental interest in physics and metrology. Quantum time transfer technologies that use frequency-entangled pulses and their coincidence detection have been proposed, offering potential enhancements in precision and better guarantees of security. In this paper, we describe a fiber-optic two-way quantum time transfer experiment. Using quantum nonlocal dispersion cancellation, time transfer over a 20-km fiber link achieves a time deviation of 922 fs over 5 s and 45 fs over 40960 s. The time transfer accuracy as a function of fiber lengths from 15 m to 20 km is also investigated, and an uncertainty of 2.46 ps in standard deviation is observed. In comparison with its classical counterparts, the fiber-optic two-way quantum time transfer setup shows appreciable improvement, and further enhancements could be obtained by using new event timers with sub-picosecond precision and single-photon detectors with lower timing jitter for optimized coincidence detection. Combined with its security advantages, the femtosecond-scale two-way quantum time transfer is expected to have numerous applications in high-precision middle-haul synchronization systems.
We present the generation of approximated coherent state superpositions - referred to as Schrodinger cat states - by the process of subtracting single photons from picosecond pulsed squeezed states of light at 830 nm. The squeezed vacuum states are p roduced by spontaneous parametric down-conversion (SPDC) in a periodically poled KTiOPO4 crystal while the single photons are probabilistically subtracted using a beamsplitter and a single photon detector. The resulting states are fully characterized with time-resolved homodyne quantum state tomography. Varying the pump power of the SPDC, we generated different states which exhibit non-Gaussian behavior.
Many different quantum information communication protocols such as teleportation, dense coding and entanglement based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is however hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order non-linearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا