ترغب بنشر مسار تعليمي؟ اضغط هنا

We report elastic neutron scattering and transport measurements on the Ni and Cr equivalently doped iron pnictide BaFe$_{2-2x}$Ni$_{x}$Cr$_{x}$As$_{2}$. Compared with the electron-doped BaFe$_{2-x}$Ni$_{x}$As$_{2}$, the long-range antiferromagnetic ( AF) order in BaFe$_{2-2x}$Ni$_{x}$Cr$_{x}$As$_{2}$ is gradually suppressed with vanishing ordered moment and N{e}el temperature near $x= 0.20$ without the appearance of superconductivity. A detailed analysis on the transport properties of BaFe$_{2-x}$Ni$_{x}$As and BaFe$_{2-2x}$Ni$_{x}$Cr$_{x}$As$_{2}$ suggests that the non-Fermi-liquid behavior associated with the linear resistivity as a function of temperature may not correspond to the disappearance of the static AF order. From the temperature dependence of the resistivity in overdoped compounds without static AF order, we find that the transport properties are actually affected by Cr impurity scattering, which may induce a metal-to-insulator crossover in highly doped BaFe$_{1.7-y}$Ni$_{0.3}$Cr$_{y}$As$_{2}$.
Understanding the microscopic origins of electronic phases in high-transition temperature (high-Tc) superconductors is important for elucidating the mechanism of superconductivity. In the paramagnetic tetragonal phase of BaFe2-xTxAs2 (where T is Co o r Ni) iron pnictides, an in-plane resistivity anisotropy has been observed. Here we use inelastic neutron scattering to show that low-energy spin excitations in these materials change from four-fold symmetric to two-fold symmetric at temperatures corresponding to the onset of the in-plane resistivity anisotropy. Because resistivity and spin excitation anisotropies both vanish near optimal superconductivity, we conclude that they are likely intimately connected.
102 - Yanqing Hu , Dong Zhou , Rui Zhang 2013
Real data show that interdependent networks usually involve inter-similarity. Intersimilarity means that a pair of interdependent nodes have neighbors in both networks that are also interdependent (Parshani et al cite{PAR10B}). For example, the coupl ed world wide port network and the global airport network are intersimilar since many pairs of linked nodes (neighboring cities), by direct flights and direct shipping lines exist in both networks. Nodes in both networks in the same city are regarded as interdependent. If two neighboring nodes in one network depend on neighboring nodes in the another we call these links common links. The fraction of common links in the system is a measure of intersimilarity. Previous simulation results suggest that intersimilarity has considerable effect on reducing the cascading failures, however, a theoretical understanding on this effect on the cascading process is currently missing. Here, we map the cascading process with inter-similarity to a percolation of networks composed of components of common links and non common links. This transforms the percolation of inter-similar system to a regular percolation on a series of subnetworks, which can be solved analytically. We apply our analysis to the case where the network of common links is an ErdH{o}s-R{e}nyi (ER) network with the average degree $K$, and the two networks of non-common links are also ER networks. We show for a fully coupled pair of ER networks, that for any $Kgeq0$, although the cascade is reduced with increasing $K$, the phase transition is still discontinuous. Our analysis can be generalized to any kind of interdependent random networks system.
By assuming that only gravitation exists between dark matter (DM) and normal matter (NM), we study the effects of fermionic DM on the properties of neutron stars using the two-fluid Tolman-Oppenheimer-Volkoff formalism. It is found that the mass-radi us relationship of the DM admixed neutron stars (DANSs) depends sensitively on the mass of DM candidates, the amount of DM, and interactions among DM candidates. The existence of DM in DANSs results in a spread of mass-radius relationships that cannot be interpreted with a unique equilibrium sequence. In some cases, the DM distribution can surpass the NM distribution to form DM halo. In particular, it is favorable to form an explicit DM halo, provided the repulsion of DM exists. It is interesting to find that the difference in particle number density distributions in DANSs and consequently in star radii caused by various density dependencies of nuclear symmetry energy tends to disappear as long as the repulsion of accumulated DM is sufficient. These phenomena indicate that the admixture of DM in neutron stars can significantly affect the astrophysical extraction of nuclear equation of state by virtue of neutron star measurements. In addition, the effect of the DM admixture on the star maximum mass is also investigated.
Growth of epitaxial graphene on the C-face of SiC has been investigated. Using a confinement controlled sublimation (CCS) method, we have achieved well controlled growth and been able to observe propagation of uniform monolayer graphene. Surface patt erns uncover two important aspects of the growth, i.e. carbon diffusion and stoichiometric requirement. Moreover, a new stepdown growth mode has been discovered. Via this mode, monolayer graphene domains can have an area of hundreds of square micrometers, while, most importantly, step bunching is avoided and the initial uniformly stepped SiC surface is preserved. The stepdown growth provides a possible route towards uniform epitaxial graphene in wafer size without compromising the initial flat surface morphology of SiC.
We consider the problem of quantifying the Pareto optimal boundary in the achievable rate region over multiple-input single-output (MISO) interference channels, where the problem boils down to solving a sequence of convex feasibility problems after c ertain transformations. The feasibility problem is solved by two new distributed optimal beamforming algorithms, where the first one is to parallelize the computation based on the method of alternating projections, and the second one is to localize the computation based on the method of cyclic projections. Convergence proofs are established for both algorithms.
A new form of multiuser diversity, named emph{multiuser interference diversity}, is investigated for opportunistic communications in cognitive radio (CR) networks by exploiting the mutual interference between the CR and the existing primary radio (PR ) links. The multiuser diversity gain and ergodic throughput are analyzed for different types of CR networks and compared against those in the conventional networks without the PR link.
83 - Rui Zhang , John Cioffi 2009
This paper studies a new decentralized resource allocation strategy, named iterative spectrum shaping (ISS), for the multi-carrier-based multiuser communication system, where two coexisting users independently and sequentially update transmit power a llocations over parallel subcarriers to maximize their individual transmit rates. Unlike the conventional iterative water-filling (IWF) algorithm that applies the single-user detection (SD) at each users receiver by treating the interference from the other user as additional noise, the proposed ISS algorithm applies multiuser detection techniques to decode both the desired users and interference users messages if it is feasible, thus termed as opportunistic multiuser detection (OMD). Two encoding methods are considered for ISS: One is carrier independent encoding where independent codewords are modulated by different subcarriers for which different decoding methods can be applied; the other is carrier joint encoding where a single codeword is modulated by all the subcarriers for which a single decoder is applied. For each encoding method, this paper presents the associated optimal user power and rate allocation strategy at each iteration of transmit adaptation. It is shown that under many circumstances the proposed ISS algorithm employing OMD is able to achieve substantial throughput gains over the conventional IWF algorithm employing SD for decentralized spectrum sharing. Applications of ISS in cognitive radio communication systems are also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا