ترغب بنشر مسار تعليمي؟ اضغط هنا

We present high-precision radial velocity observations of WASP-17 throughout the transit of its close-in giant planet, using the MIKE spectrograph on the 6.5m Magellan Telescope at Las Campanas Observatory. By modeling the Rossiter-McLaughlin effect, we find the sky-projected spin-orbit angle to be lambda = 167.4 pm 11.2 deg. This independently confirms the previous finding that WASP-17b is on a retrograde orbit, suggesting it underwent migration via a mechanism other than just the gravitational interaction between the planet and the disk. Interestingly, our result for lambda differs by 45 pm 13 deg from the previously announced value, and we also find that the spectroscopic transit occurs 15 pm 5 min earlier than expected, based on the published ephemeris. The discrepancy in the ephemeris highlights the need for contemporaneous spectroscopic and photometric transit observations whenever possible.
The perturbation caused by planet-moon binarity on the time-of-arrival signal of a pulsar with an orbiting planet is derived for the case in which the orbits of the moon and the planet-moon barycenter are both circular and coplanar. The signal consis ts of two sinusoids with frequency (2n_p - 3n_b) and (2n_p - n_b ), where n_p and n_b are the mean motions of the planet and moon around their barycenter, and the planet-moon system around the host, respectively. The amplitude of the signal is equal to the fraction sin I[9(M_p M_m)/16(M_p + M_m)^2] [r/R]^5 of the system crossing time R/c, where M_p and M_m are the the masses of the planet and moon, r is their orbital separation, R is the distance between the host pulsar and planet-moon barycenter, I is the inclination of the orbital plane of the planet, and c is the speed of light. The analysis is applied to the case of PSR B1620-26 b, a pulsar planet, to constrain the orbital separation and mass of any possible moons. We find that a stable moon orbiting this pulsar planet could be detected, if the moon had a separation of about one fiftieth of that of the orbit of the planet around the pulsar, and a mass ratio to the planet of ~5% or larger.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا