ترغب بنشر مسار تعليمي؟ اضغط هنا

High spectral resolution evolutionary synthesis models have become a routinely used ingredient in extragalactic work, and as such deserve thorough testing. Star clusters are ideal laboratories for such tests. This paper applies the spectral fitting m ethodology outlined in Paper I to a sample of clusters, mainly from the Magellanic Clouds and spanning a wide range in age and metallicity, fitting their integrated light spectra with a suite of modern evolutionary synthesis models for single stellar population. The combinations of model plus spectral library employed in this investigation are Galaxev/STELIB, Vazdekis/MILES, SED@/GRANADA, and Galaxev/MILES+GRANADA, which provide a representative sample of models currently available for spectral fitting work. A series of empirical tests are performed with these models, comparing the quality of the spectral fits and the values of age, metallicity and extinction obtained with each of them. A comparison is also made between the properties derived from these spectral fits and literature data on these nearby, well studied clusters. These comparisons are done with the general goal of providing useful feedback for model makers, as well as guidance to the users of such models. We find that new generation of models using the GRANADA and MILES libraries are superior to STELIB-based models both in terms of spectral fit quality and regarding the accuracy with which age and metallicity are retrieved. Accuracies of about 0.1 dex in age and 0.3 dex in metallicity can be achieved as long as the models are not extrapolated beyond their expected range of validity.
High resolution spectral models for simple stellar populations (SSP) developed in the past few years have become a standard ingredient in studies of stellar population of galaxies. As more such models become available, it becomes increasingly importa nt to test them. In this and a companion paper, we test a suite of publicly available evolutionary synthesis models using integrated optical spectra in the blue-near-UV range of 27 well studied star clusters from the work of Leonardi & Rose (2003) spanning a wide range of ages and metallicities. Most (23) of the clusters are from the Magellanic clouds. This paper concentrates on methodological aspects of spectral fitting. The data are fitted with SSP spectral models from Vazdekis and collaborators, based on the MILES library. Best-fit and Bayesian estimates of age, metallicity and extinction are presented, and degeneracies between these parameters are mapped. We find that these models can match the observed spectra very well in most cases, with small formal uncertainties in t, Z and A_V. In some cases, the spectral fits indicate that the models lack a blue old population, probably associated with the horizontal branch. This methodology, which is mostly based on the publicly available code STARLIGHT, is extended to other sets of models in Paper II, where a comparison with properties derived from spatially resolved data (color-magnitude diagrams) is presented. The global aim of these two papers is to provide guidance to users of evolutionary synthesis models and empirical feedback to model makers.
This review presents a personal view of the role that starbursts play in the star formation history of the universe. It is mainly focused on the properties of nearby starburst galaxies selected for their strong UV and/or FIR emission. The similaritie s between local starbursts and star-forming galaxies at high redshift are also presented. I discuss too the role that LIRGs and ULIRGs and merging systems play in the formation and evolution of galaxies.
We present an atlas of the central regions of 75 Seyfert galaxies imaged in the near-UV with the Advanced Camera for Surveys of the Hubble Space Telescope at an average resolution of ~10pc. These data complement archival high resolution data from the Space Telescope at optical and near-IR wavelengths, creating an extremely valuable dataset for astronomers with a broad range of scientific interests. Our goal is to investigate the nature of the near-UV light in these objects, its relation to the circumnuclear starburst phenomenon, and the connection of this to the evolution and growth of the galaxy bulge and central black hole. In this paper, we describe the near-UV morphology of the objects and characterize the near-UV emission. We estimate the size and the luminosity of the emitting regions and extract the luminosity profile. We also determine the presence of unresolved compact nuclei. In addition, the circumnuclear stellar cluster population is identified, and the contribution of the stellar clusters to the total light, at this wavelength, is estimated. The size of the sample allows us to draw robust statistical conclusions. We find that {Seyfert 1} galaxies are completely dominated by its bright and compact nucleus, that remains point-like at this resolution, while we find almost no unresolved nucleus in Seyfert 2. The Seyfert types 1 and 2 are quite segregated in an asymmetry vs compactness plot. Stellar clusters are found somewhat more frequently in Sy2 (in ~70% of the galaxies) than in Sy1 (~57%), and contribute more to the total light in Sy2, but this two differences seem to be mostly due to the large contribution of the compact nucleus in Sy1, as the luminosity distribution of the clusters is similar in both Sy types.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا