ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the many-body localization (MBL) transition of Floquet eigenstates in a driven, interacting fermionic chain with an incommensurate Aubry-Andr{e} potential and a time-periodic hopping amplitude as a function of the drive frequency $omega_D$ u sing exact diagonalization (ED). We find that the nature of the Floquet eigenstates change from ergodic to Floquet-MBL with increasing frequency; moreover, for a significant range of intermediate $omega_D$, the Floquet eigenstates exhibit non-trivial fractal dimensions. We find a possible transition from the ergodic to this multifractal phase followed by a gradual crossover to the MBL phase as the drive frequency is increased. We also study the fermion auto-correlation function, entanglement entropy, normalized participation ratio (NPR), fermion transport and the inverse participation ratio (IPR) as a function of $omega_D$. We show that the auto-correlation, fermion transport and NPR displays qualitatively different characteristics (compared to their behavior in the ergodic and MBL regions) for the range of $omega_D$ which supports multifractal eigenstates. In contrast, the entanglement growth in this frequency range tend to have similar features as in the MBL regime; its rate of growth is controlled by $omega_D$. Our analysis thus indicates that the multifractal nature of Floquet-MBL eigenstates can be detected by studying auto-correlation function and fermionic transport of these driven chains. We support our numerical results with a semi-analytic expression of the Floquet Hamiltonian obtained using Floquet perturbation theory (FPT) and discuss possible experiments which can test our predictions.
236 - Roopayan Ghosh , Arnab Sen , 2017
We study ramp and periodic dynamics of ultracold bosons in an one-dimensional (1D) optical lattice which supports quantum critical points separating a uniform and a $Z_3$ or $Z_4$ symmetry broken density-wave ground state. Our protocol involves both linear and periodic drives which takes the system from the uniform state to the quantum critical point (for linear drive protocol) or to the ordered state and back (for periodic drive protocols) via controlled variation of a parameter of the system Hamiltonian. We provide exact numerical computation, for finite-size boson chains with $L le 24$ using exact-diagonalization (ED), of the excitation density $D$, the wavefunction overlap $F$, and the excess energy $Q$ at the end of the drive protocol. For the linear ramp protocol, we identify the range of ramp speeds for which $D$ and $Q$ shows Kibble-Zurek scaling. We find, based on numerical analysis with $L le 24$, that such scaling is consistent with that expected from critical exponents of the $q$-state Potts universality class with $q=3,4$. For periodic protocol, we show that the model display near-perfect dynamical freezing at specific frequencies; at these frequencies $D, Q to 0$ and $|F| to 1$. We provide a semi-analytic explanation of such freezing behavior and relate this phenomenon to a many-body version of Stuckelberg interference. We suggest experiments which can test our theory.
We study the superconducting current of a Josephson junction (JJ) coupled to an external nanomagnet driven by a time dependent magnetic field both without and in the presence of an external AC drive. We provide an analytic, albeit perturbative, solut ion for the Landau-Lifshitz (LL) equations governing the coupled JJ-nanomagnet system in the presence of a magnetic field with arbitrary time-dependence oriented along the easy axis of the nanomagnets magnetization and in the limit of weak dimensionless coupling $epsilon_0$ between the JJ and the nanomagnet. We show the existence of Shapiro-like steps in the I-V characteristics of the JJ subjected to a voltage bias for a constant or periodically varying magnetic field and explore the effect of rotation of the magnetic field and the presence of an external AC drive on these steps. We support our analytic results with exact numerical solution of the LL equations. We also extend our results to dissipative nanomagnets by providing a perturbative solution to the Landau-Lifshitz-Gilbert (LLG) equations for weak dissipation. We study the fate of magnetization-induced Shapiro steps in the presence of dissipation both from our analytical results and via numerical solution of the coupled LLG equations. We discuss experiments which can test our theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا